Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleldisjseldisj Structured version   Visualization version   GIF version

Theorem eleldisjseldisj 38677
Description: The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.)
Assertion
Ref Expression
eleldisjseldisj (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴))

Proof of Theorem eleldisjseldisj
StepHypRef Expression
1 eleldisjs 38676 . . 3 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ( E ↾ 𝐴) ∈ Disjs ))
2 cnvepresex 38282 . . . 4 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
3 eldisjsdisj 38675 . . . 4 (( E ↾ 𝐴) ∈ V → (( E ↾ 𝐴) ∈ Disjs ↔ Disj ( E ↾ 𝐴)))
42, 3syl 17 . . 3 (𝐴𝑉 → (( E ↾ 𝐴) ∈ Disjs ↔ Disj ( E ↾ 𝐴)))
51, 4bitrd 279 . 2 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ Disj ( E ↾ 𝐴)))
6 df-eldisj 38655 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
75, 6bitr4di 289 1 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Vcvv 3488   E cep 5598  ccnv 5694  cres 5697   Disjs cdisjs 38160   Disj wdisjALTV 38161   ElDisjs celdisjs 38162   ElDisj weldisj 38163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-eprel 5599  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-coss 38359  df-rels 38433  df-ssr 38446  df-cnvrefs 38473  df-cnvrefrels 38474  df-cnvrefrel 38475  df-disjss 38651  df-disjs 38652  df-disjALTV 38653  df-eldisjs 38654  df-eldisj 38655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator