Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleldisjseldisj Structured version   Visualization version   GIF version

Theorem eleldisjseldisj 38706
Description: The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.)
Assertion
Ref Expression
eleldisjseldisj (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴))

Proof of Theorem eleldisjseldisj
StepHypRef Expression
1 eleldisjs 38705 . . 3 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ( E ↾ 𝐴) ∈ Disjs ))
2 cnvepresex 38303 . . . 4 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
3 eldisjsdisj 38704 . . . 4 (( E ↾ 𝐴) ∈ V → (( E ↾ 𝐴) ∈ Disjs ↔ Disj ( E ↾ 𝐴)))
42, 3syl 17 . . 3 (𝐴𝑉 → (( E ↾ 𝐴) ∈ Disjs ↔ Disj ( E ↾ 𝐴)))
51, 4bitrd 279 . 2 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ Disj ( E ↾ 𝐴)))
6 df-eldisj 38684 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
75, 6bitr4di 289 1 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3438   E cep 5522  ccnv 5622  cres 5625   Disjs cdisjs 38187   Disj wdisjALTV 38188   ElDisjs celdisjs 38189   ElDisj weldisj 38190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-coss 38387  df-rels 38461  df-ssr 38474  df-cnvrefs 38501  df-cnvrefrels 38502  df-cnvrefrel 38503  df-disjss 38680  df-disjs 38681  df-disjALTV 38682  df-eldisjs 38683  df-eldisj 38684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator