Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleldisjseldisj Structured version   Visualization version   GIF version

Theorem eleldisjseldisj 36767
Description: The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.)
Assertion
Ref Expression
eleldisjseldisj (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴))

Proof of Theorem eleldisjseldisj
StepHypRef Expression
1 eleldisjs 36766 . . 3 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ( E ↾ 𝐴) ∈ Disjs ))
2 cnvepresex 36396 . . . 4 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
3 eldisjsdisj 36765 . . . 4 (( E ↾ 𝐴) ∈ V → (( E ↾ 𝐴) ∈ Disjs ↔ Disj ( E ↾ 𝐴)))
42, 3syl 17 . . 3 (𝐴𝑉 → (( E ↾ 𝐴) ∈ Disjs ↔ Disj ( E ↾ 𝐴)))
51, 4bitrd 278 . 2 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ Disj ( E ↾ 𝐴)))
6 df-eldisj 36745 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
75, 6bitr4di 288 1 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  Vcvv 3422   E cep 5485  ccnv 5579  cres 5582   Disjs cdisjs 36293   Disj wdisjALTV 36294   ElDisjs celdisjs 36295   ElDisj weldisj 36296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-coss 36464  df-rels 36530  df-ssr 36543  df-cnvrefs 36568  df-cnvrefrels 36569  df-cnvrefrel 36570  df-disjss 36741  df-disjs 36742  df-disjALTV 36743  df-eldisjs 36744  df-eldisj 36745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator