![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleldisjseldisj | Structured version Visualization version GIF version |
Description: The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.) |
Ref | Expression |
---|---|
eleldisjseldisj | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleldisjs 37593 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) | |
2 | cnvepresex 37198 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
3 | eldisjsdisj 37592 | . . . 4 ⊢ ((◡ E ↾ 𝐴) ∈ V → ((◡ E ↾ 𝐴) ∈ Disjs ↔ Disj (◡ E ↾ 𝐴))) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) ∈ Disjs ↔ Disj (◡ E ↾ 𝐴))) |
5 | 1, 4 | bitrd 278 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ Disj (◡ E ↾ 𝐴))) |
6 | df-eldisj 37572 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
7 | 5, 6 | bitr4di 288 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Vcvv 3474 E cep 5579 ◡ccnv 5675 ↾ cres 5678 Disjs cdisjs 37071 Disj wdisjALTV 37072 ElDisjs celdisjs 37073 ElDisj weldisj 37074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-coss 37276 df-rels 37350 df-ssr 37363 df-cnvrefs 37390 df-cnvrefrels 37391 df-cnvrefrel 37392 df-disjss 37568 df-disjs 37569 df-disjALTV 37570 df-eldisjs 37571 df-eldisj 37572 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |