Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleldisjseldisj Structured version   Visualization version   GIF version

Theorem eleldisjseldisj 38716
Description: The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.)
Assertion
Ref Expression
eleldisjseldisj (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴))

Proof of Theorem eleldisjseldisj
StepHypRef Expression
1 eleldisjs 38715 . . 3 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ( E ↾ 𝐴) ∈ Disjs ))
2 cnvepresex 38313 . . . 4 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
3 eldisjsdisj 38714 . . . 4 (( E ↾ 𝐴) ∈ V → (( E ↾ 𝐴) ∈ Disjs ↔ Disj ( E ↾ 𝐴)))
42, 3syl 17 . . 3 (𝐴𝑉 → (( E ↾ 𝐴) ∈ Disjs ↔ Disj ( E ↾ 𝐴)))
51, 4bitrd 279 . 2 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ Disj ( E ↾ 𝐴)))
6 df-eldisj 38694 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
75, 6bitr4di 289 1 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3450   E cep 5539  ccnv 5639  cres 5642   Disjs cdisjs 38197   Disj wdisjALTV 38198   ElDisjs celdisjs 38199   ElDisj weldisj 38200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-eprel 5540  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-coss 38397  df-rels 38471  df-ssr 38484  df-cnvrefs 38511  df-cnvrefrels 38512  df-cnvrefrel 38513  df-disjss 38690  df-disjs 38691  df-disjALTV 38692  df-eldisjs 38693  df-eldisj 38694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator