| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eldisj | Structured version Visualization version GIF version | ||
| Description: Define the disjoint
element relation predicate, i.e., the disjoint
elementhood predicate. Read: the elements of 𝐴 are disjoint. The
element of the disjoint elements class and the disjoint elementhood
predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when
𝐴 is a set, see eleldisjseldisj 38837.
As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 38981 with dfeldisj5 38829. See also the comments of dfmembpart2 38878 and of df-parts 38873. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| Ref | Expression |
|---|---|
| df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | weldisj 38268 | . 2 wff ElDisj 𝐴 |
| 3 | cep 5513 | . . . . 5 class E | |
| 4 | 3 | ccnv 5613 | . . . 4 class ◡ E |
| 5 | 4, 1 | cres 5616 | . . 3 class (◡ E ↾ 𝐴) |
| 6 | 5 | wdisjALTV 38266 | . 2 wff Disj (◡ E ↾ 𝐴) |
| 7 | 2, 6 | wb 206 | 1 wff ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfeldisj2 38826 dfeldisj3 38827 dfeldisj4 38828 eleldisjseldisj 38837 eldisjss 38846 eldisjeq 38849 eldisjn0elb 38853 dfmembpart2 38878 eldisjim 38892 eldisjim2 38893 eldisjn0el 38914 eldisjlem19 38918 eqvreldisj3 38934 |
| Copyright terms: Public domain | W3C validator |