| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eldisj | Structured version Visualization version GIF version | ||
| Description: Define the disjoint
element relation predicate, i.e., the disjoint
elementhood predicate. Read: the elements of 𝐴 are disjoint. The
element of the disjoint elements class and the disjoint elementhood
predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when
𝐴 is a set, see eleldisjseldisj 38747.
As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 38890 with dfeldisj5 38739. See also the comments of dfmembpart2 38788 and of df-parts 38783. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| Ref | Expression |
|---|---|
| df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | weldisj 38235 | . 2 wff ElDisj 𝐴 |
| 3 | cep 5552 | . . . . 5 class E | |
| 4 | 3 | ccnv 5653 | . . . 4 class ◡ E |
| 5 | 4, 1 | cres 5656 | . . 3 class (◡ E ↾ 𝐴) |
| 6 | 5 | wdisjALTV 38233 | . 2 wff Disj (◡ E ↾ 𝐴) |
| 7 | 2, 6 | wb 206 | 1 wff ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfeldisj2 38736 dfeldisj3 38737 dfeldisj4 38738 eleldisjseldisj 38747 eldisjss 38756 eldisjeq 38759 eldisjn0elb 38763 dfmembpart2 38788 eldisjim 38802 eldisjim2 38803 eldisjn0el 38824 eldisjlem19 38828 eqvreldisj3 38844 |
| Copyright terms: Public domain | W3C validator |