![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eldisj | Structured version Visualization version GIF version |
Description: Define the disjoint
element relation predicate, i.e., the disjoint
elementhood predicate. Read: the elements of 𝐴 are disjoint. The
element of the disjoint elements class and the disjoint elementhood
predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when
𝐴 is a set, see eleldisjseldisj 37902.
As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 38045 with dfeldisj5 37894. See also the comments of dfmembpart2 37943 and of df-parts 37938. (Contributed by Peter Mazsa, 17-Jul-2021.) |
Ref | Expression |
---|---|
df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | weldisj 37382 | . 2 wff ElDisj 𝐴 |
3 | cep 5578 | . . . . 5 class E | |
4 | 3 | ccnv 5674 | . . . 4 class ◡ E |
5 | 4, 1 | cres 5677 | . . 3 class (◡ E ↾ 𝐴) |
6 | 5 | wdisjALTV 37380 | . 2 wff Disj (◡ E ↾ 𝐴) |
7 | 2, 6 | wb 205 | 1 wff ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfeldisj2 37891 dfeldisj3 37892 dfeldisj4 37893 eleldisjseldisj 37902 eldisjss 37911 eldisjeq 37914 eldisjn0elb 37918 dfmembpart2 37943 eldisjim 37957 eldisjim2 37958 eldisjn0el 37979 eldisjlem19 37983 eqvreldisj3 37999 |
Copyright terms: Public domain | W3C validator |