Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eldisj Structured version   Visualization version   GIF version

Definition df-eldisj 38706
Description: Define the disjoint element relation predicate, i.e., the disjoint elementhood predicate. Read: the elements of 𝐴 are disjoint. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 38728.

As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 38872 with dfeldisj5 38720. See also the comments of dfmembpart2 38769 and of df-parts 38764. (Contributed by Peter Mazsa, 17-Jul-2021.)

Assertion
Ref Expression
df-eldisj ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))

Detailed syntax breakdown of Definition df-eldisj
StepHypRef Expression
1 cA . . 3 class 𝐴
21weldisj 38212 . 2 wff ElDisj 𝐴
3 cep 5540 . . . . 5 class E
43ccnv 5640 . . . 4 class E
54, 1cres 5643 . . 3 class ( E ↾ 𝐴)
65wdisjALTV 38210 . 2 wff Disj ( E ↾ 𝐴)
72, 6wb 206 1 wff ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  dfeldisj2  38717  dfeldisj3  38718  dfeldisj4  38719  eleldisjseldisj  38728  eldisjss  38737  eldisjeq  38740  eldisjn0elb  38744  dfmembpart2  38769  eldisjim  38783  eldisjim2  38784  eldisjn0el  38805  eldisjlem19  38809  eqvreldisj3  38825
  Copyright terms: Public domain W3C validator