![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleldisjs | Structured version Visualization version GIF version |
Description: Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.) |
Ref | Expression |
---|---|
eleldisjs | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 5989 | . . 3 ⊢ (𝑎 = 𝐴 → (◡ E ↾ 𝑎) = (◡ E ↾ 𝐴)) | |
2 | 1 | eleq1d 2822 | . 2 ⊢ (𝑎 = 𝐴 → ((◡ E ↾ 𝑎) ∈ Disjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
3 | df-eldisjs 38649 | . 2 ⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } | |
4 | 2, 3 | elab2g 3683 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1535 ∈ wcel 2104 E cep 5581 ◡ccnv 5682 ↾ cres 5685 Disjs cdisjs 38155 ElDisjs celdisjs 38157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1538 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-rab 3433 df-in 3970 df-opab 5212 df-xp 5689 df-res 5695 df-eldisjs 38649 |
This theorem is referenced by: eleldisjseldisj 38672 |
Copyright terms: Public domain | W3C validator |