![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleldisjs | Structured version Visualization version GIF version |
Description: Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.) |
Ref | Expression |
---|---|
eleldisjs | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 5930 | . . 3 ⊢ (𝑎 = 𝐴 → (◡ E ↾ 𝑎) = (◡ E ↾ 𝐴)) | |
2 | 1 | eleq1d 2822 | . 2 ⊢ (𝑎 = 𝐴 → ((◡ E ↾ 𝑎) ∈ Disjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
3 | df-eldisjs 37106 | . 2 ⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } | |
4 | 2, 3 | elab2g 3630 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 E cep 5534 ◡ccnv 5630 ↾ cres 5633 Disjs cdisjs 36605 ElDisjs celdisjs 36607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3406 df-in 3915 df-opab 5166 df-xp 5637 df-res 5643 df-eldisjs 37106 |
This theorem is referenced by: eleldisjseldisj 37129 |
Copyright terms: Public domain | W3C validator |