| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eleldisjs | Structured version Visualization version GIF version | ||
| Description: Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.) |
| Ref | Expression |
|---|---|
| eleldisjs | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 5922 | . . 3 ⊢ (𝑎 = 𝐴 → (◡ E ↾ 𝑎) = (◡ E ↾ 𝐴)) | |
| 2 | 1 | eleq1d 2816 | . 2 ⊢ (𝑎 = 𝐴 → ((◡ E ↾ 𝑎) ∈ Disjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
| 3 | df-eldisjs 38814 | . 2 ⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } | |
| 4 | 2, 3 | elab2g 3631 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 E cep 5513 ◡ccnv 5613 ↾ cres 5616 Disjs cdisjs 38265 ElDisjs celdisjs 38267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3904 df-opab 5152 df-xp 5620 df-res 5626 df-eldisjs 38814 |
| This theorem is referenced by: eleldisjseldisj 38837 |
| Copyright terms: Public domain | W3C validator |