Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleldisjs Structured version   Visualization version   GIF version

Theorem eleldisjs 37598
Description: Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.)
Assertion
Ref Expression
eleldisjs (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ( E ↾ 𝐴) ∈ Disjs ))

Proof of Theorem eleldisjs
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 reseq2 5977 . . 3 (𝑎 = 𝐴 → ( E ↾ 𝑎) = ( E ↾ 𝐴))
21eleq1d 2819 . 2 (𝑎 = 𝐴 → (( E ↾ 𝑎) ∈ Disjs ↔ ( E ↾ 𝐴) ∈ Disjs ))
3 df-eldisjs 37576 . 2 ElDisjs = {𝑎 ∣ ( E ↾ 𝑎) ∈ Disjs }
42, 3elab2g 3671 1 (𝐴𝑉 → (𝐴 ∈ ElDisjs ↔ ( E ↾ 𝐴) ∈ Disjs ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107   E cep 5580  ccnv 5676  cres 5679   Disjs cdisjs 37076   ElDisjs celdisjs 37078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-in 3956  df-opab 5212  df-xp 5683  df-res 5689  df-eldisjs 37576
This theorem is referenced by:  eleldisjseldisj  37599
  Copyright terms: Public domain W3C validator