![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleldisjs | Structured version Visualization version GIF version |
Description: Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.) |
Ref | Expression |
---|---|
eleldisjs | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 5999 | . . 3 ⊢ (𝑎 = 𝐴 → (◡ E ↾ 𝑎) = (◡ E ↾ 𝐴)) | |
2 | 1 | eleq1d 2829 | . 2 ⊢ (𝑎 = 𝐴 → ((◡ E ↾ 𝑎) ∈ Disjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
3 | df-eldisjs 38654 | . 2 ⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } | |
4 | 2, 3 | elab2g 3696 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 E cep 5598 ◡ccnv 5694 ↾ cres 5697 Disjs cdisjs 38160 ElDisjs celdisjs 38162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-in 3983 df-opab 5229 df-xp 5701 df-res 5707 df-eldisjs 38654 |
This theorem is referenced by: eleldisjseldisj 38677 |
Copyright terms: Public domain | W3C validator |