![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evlval | Structured version Visualization version GIF version |
Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
evlval.q | ⊢ 𝑄 = (𝐼 eval 𝑅) |
evlval.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
evlval | ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlval.q | . 2 ⊢ 𝑄 = (𝐼 eval 𝑅) | |
2 | oveq12 7410 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 evalSub 𝑟) = (𝐼 evalSub 𝑅)) | |
3 | fveq2 6881 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
4 | evlval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘𝑟) = 𝐵) |
7 | 2, 6 | fveq12d 6888 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝑖 evalSub 𝑟)‘(Base‘𝑟)) = ((𝐼 evalSub 𝑅)‘𝐵)) |
8 | df-evl 21945 | . . . 4 ⊢ eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟))) | |
9 | fvex 6894 | . . . 4 ⊢ ((𝐼 evalSub 𝑅)‘𝐵) ∈ V | |
10 | 7, 8, 9 | ovmpoa 7555 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)) |
11 | 8 | mpondm0 7640 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ∅) |
12 | 0fv 6925 | . . . . 5 ⊢ (∅‘𝐵) = ∅ | |
13 | 11, 12 | eqtr4di 2782 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = (∅‘𝐵)) |
14 | reldmevls 21956 | . . . . . 6 ⊢ Rel dom evalSub | |
15 | 14 | ovprc 7439 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 evalSub 𝑅) = ∅) |
16 | 15 | fveq1d 6883 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 evalSub 𝑅)‘𝐵) = (∅‘𝐵)) |
17 | 13, 16 | eqtr4d 2767 | . . 3 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)) |
18 | 10, 17 | pm2.61i 182 | . 2 ⊢ (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵) |
19 | 1, 18 | eqtri 2752 | 1 ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∅c0 4314 ‘cfv 6533 (class class class)co 7401 Basecbs 17142 evalSub ces 21942 eval cevl 21943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-iota 6485 df-fun 6535 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-evls 21944 df-evl 21945 |
This theorem is referenced by: evlrhm 21968 evlsscasrng 21969 evlsvarsrng 21971 evl1fval1lem 22170 evl1sca 22174 evl1var 22176 pf1rcl 22189 mpfpf1 22191 pf1ind 22195 evlsevl 41598 mhphf4 41627 mzpmfp 41940 |
Copyright terms: Public domain | W3C validator |