Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evlval | Structured version Visualization version GIF version |
Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
evlval.q | ⊢ 𝑄 = (𝐼 eval 𝑅) |
evlval.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
evlval | ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlval.q | . 2 ⊢ 𝑄 = (𝐼 eval 𝑅) | |
2 | oveq12 7264 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 evalSub 𝑟) = (𝐼 evalSub 𝑅)) | |
3 | fveq2 6756 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
4 | evlval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘𝑟) = 𝐵) |
7 | 2, 6 | fveq12d 6763 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝑖 evalSub 𝑟)‘(Base‘𝑟)) = ((𝐼 evalSub 𝑅)‘𝐵)) |
8 | df-evl 21193 | . . . 4 ⊢ eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟))) | |
9 | fvex 6769 | . . . 4 ⊢ ((𝐼 evalSub 𝑅)‘𝐵) ∈ V | |
10 | 7, 8, 9 | ovmpoa 7406 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)) |
11 | 8 | mpondm0 7488 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ∅) |
12 | 0fv 6795 | . . . . 5 ⊢ (∅‘𝐵) = ∅ | |
13 | 11, 12 | eqtr4di 2797 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = (∅‘𝐵)) |
14 | reldmevls 21204 | . . . . . 6 ⊢ Rel dom evalSub | |
15 | 14 | ovprc 7293 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 evalSub 𝑅) = ∅) |
16 | 15 | fveq1d 6758 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 evalSub 𝑅)‘𝐵) = (∅‘𝐵)) |
17 | 13, 16 | eqtr4d 2781 | . . 3 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)) |
18 | 10, 17 | pm2.61i 182 | . 2 ⊢ (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵) |
19 | 1, 18 | eqtri 2766 | 1 ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 evalSub ces 21190 eval cevl 21191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-evls 21192 df-evl 21193 |
This theorem is referenced by: evlrhm 21216 evlsscasrng 21217 evlsvarsrng 21219 evl1fval1lem 21406 evl1sca 21410 evl1var 21412 pf1rcl 21425 mpfpf1 21427 pf1ind 21431 mzpmfp 40485 |
Copyright terms: Public domain | W3C validator |