MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlval Structured version   Visualization version   GIF version

Theorem evlval 22142
Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evlval.q 𝑄 = (𝐼 eval 𝑅)
evlval.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evlval 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵)

Proof of Theorem evlval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlval.q . 2 𝑄 = (𝐼 eval 𝑅)
2 oveq12 7457 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 evalSub 𝑟) = (𝐼 evalSub 𝑅))
3 fveq2 6920 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4 evlval.b . . . . . . 7 𝐵 = (Base‘𝑅)
53, 4eqtr4di 2798 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
65adantl 481 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘𝑟) = 𝐵)
72, 6fveq12d 6927 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖 evalSub 𝑟)‘(Base‘𝑟)) = ((𝐼 evalSub 𝑅)‘𝐵))
8 df-evl 22122 . . . 4 eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
9 fvex 6933 . . . 4 ((𝐼 evalSub 𝑅)‘𝐵) ∈ V
107, 8, 9ovmpoa 7605 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵))
118mpondm0 7690 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ∅)
12 0fv 6964 . . . . 5 (∅‘𝐵) = ∅
1311, 12eqtr4di 2798 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = (∅‘𝐵))
14 reldmevls 22131 . . . . . 6 Rel dom evalSub
1514ovprc 7486 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 evalSub 𝑅) = ∅)
1615fveq1d 6922 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 evalSub 𝑅)‘𝐵) = (∅‘𝐵))
1713, 16eqtr4d 2783 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵))
1810, 17pm2.61i 182 . 2 (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)
191, 18eqtri 2768 1 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cfv 6573  (class class class)co 7448  Basecbs 17258   evalSub ces 22119   eval cevl 22120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-evls 22121  df-evl 22122
This theorem is referenced by:  evlrhm  22143  evlsscasrng  22144  evlsvarsrng  22146  evl1fval1lem  22355  evl1sca  22359  evl1var  22361  pf1rcl  22374  mpfpf1  22376  pf1ind  22380  evlsevl  42526  mhphf4  42555  mzpmfp  42703
  Copyright terms: Public domain W3C validator