MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlval Structured version   Visualization version   GIF version

Theorem evlval 20300
Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evlval.q 𝑄 = (𝐼 eval 𝑅)
evlval.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evlval 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵)

Proof of Theorem evlval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlval.q . 2 𝑄 = (𝐼 eval 𝑅)
2 oveq12 7157 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 evalSub 𝑟) = (𝐼 evalSub 𝑅))
3 fveq2 6663 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4 evlval.b . . . . . . 7 𝐵 = (Base‘𝑅)
53, 4syl6eqr 2872 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
65adantl 484 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘𝑟) = 𝐵)
72, 6fveq12d 6670 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖 evalSub 𝑟)‘(Base‘𝑟)) = ((𝐼 evalSub 𝑅)‘𝐵))
8 df-evl 20279 . . . 4 eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
9 fvex 6676 . . . 4 ((𝐼 evalSub 𝑅)‘𝐵) ∈ V
107, 8, 9ovmpoa 7297 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵))
118mpondm0 7378 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ∅)
12 0fv 6702 . . . . 5 (∅‘𝐵) = ∅
1311, 12syl6eqr 2872 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = (∅‘𝐵))
14 reldmevls 20289 . . . . . 6 Rel dom evalSub
1514ovprc 7186 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 evalSub 𝑅) = ∅)
1615fveq1d 6665 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 evalSub 𝑅)‘𝐵) = (∅‘𝐵))
1713, 16eqtr4d 2857 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵))
1810, 17pm2.61i 184 . 2 (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)
191, 18eqtri 2842 1 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1530  wcel 2107  Vcvv 3493  c0 4289  cfv 6348  (class class class)co 7148  Basecbs 16475   evalSub ces 20276   eval cevl 20277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-evls 20278  df-evl 20279
This theorem is referenced by:  evlrhm  20301  evlsscasrng  20302  evlsvarsrng  20304  evl1fval1lem  20485  evl1sca  20489  evl1var  20491  pf1rcl  20504  mpfpf1  20506  pf1ind  20510  mzpmfp  39329
  Copyright terms: Public domain W3C validator