MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlval Structured version   Visualization version   GIF version

Theorem evlval 21215
Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evlval.q 𝑄 = (𝐼 eval 𝑅)
evlval.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evlval 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵)

Proof of Theorem evlval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlval.q . 2 𝑄 = (𝐼 eval 𝑅)
2 oveq12 7264 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 evalSub 𝑟) = (𝐼 evalSub 𝑅))
3 fveq2 6756 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4 evlval.b . . . . . . 7 𝐵 = (Base‘𝑅)
53, 4eqtr4di 2797 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
65adantl 481 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘𝑟) = 𝐵)
72, 6fveq12d 6763 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖 evalSub 𝑟)‘(Base‘𝑟)) = ((𝐼 evalSub 𝑅)‘𝐵))
8 df-evl 21193 . . . 4 eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
9 fvex 6769 . . . 4 ((𝐼 evalSub 𝑅)‘𝐵) ∈ V
107, 8, 9ovmpoa 7406 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵))
118mpondm0 7488 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ∅)
12 0fv 6795 . . . . 5 (∅‘𝐵) = ∅
1311, 12eqtr4di 2797 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = (∅‘𝐵))
14 reldmevls 21204 . . . . . 6 Rel dom evalSub
1514ovprc 7293 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 evalSub 𝑅) = ∅)
1615fveq1d 6758 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 evalSub 𝑅)‘𝐵) = (∅‘𝐵))
1713, 16eqtr4d 2781 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵))
1810, 17pm2.61i 182 . 2 (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)
191, 18eqtri 2766 1 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cfv 6418  (class class class)co 7255  Basecbs 16840   evalSub ces 21190   eval cevl 21191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-evls 21192  df-evl 21193
This theorem is referenced by:  evlrhm  21216  evlsscasrng  21217  evlsvarsrng  21219  evl1fval1lem  21406  evl1sca  21410  evl1var  21412  pf1rcl  21425  mpfpf1  21427  pf1ind  21431  mzpmfp  40485
  Copyright terms: Public domain W3C validator