| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlval | Structured version Visualization version GIF version | ||
| Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| evlval.q | ⊢ 𝑄 = (𝐼 eval 𝑅) |
| evlval.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| evlval | ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlval.q | . 2 ⊢ 𝑄 = (𝐼 eval 𝑅) | |
| 2 | oveq12 7396 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 evalSub 𝑟) = (𝐼 evalSub 𝑅)) | |
| 3 | fveq2 6858 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 4 | evlval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘𝑟) = 𝐵) |
| 7 | 2, 6 | fveq12d 6865 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝑖 evalSub 𝑟)‘(Base‘𝑟)) = ((𝐼 evalSub 𝑅)‘𝐵)) |
| 8 | df-evl 21982 | . . . 4 ⊢ eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟))) | |
| 9 | fvex 6871 | . . . 4 ⊢ ((𝐼 evalSub 𝑅)‘𝐵) ∈ V | |
| 10 | 7, 8, 9 | ovmpoa 7544 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)) |
| 11 | 8 | mpondm0 7629 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ∅) |
| 12 | 0fv 6902 | . . . . 5 ⊢ (∅‘𝐵) = ∅ | |
| 13 | 11, 12 | eqtr4di 2782 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = (∅‘𝐵)) |
| 14 | reldmevls 21991 | . . . . . 6 ⊢ Rel dom evalSub | |
| 15 | 14 | ovprc 7425 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 evalSub 𝑅) = ∅) |
| 16 | 15 | fveq1d 6860 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 evalSub 𝑅)‘𝐵) = (∅‘𝐵)) |
| 17 | 13, 16 | eqtr4d 2767 | . . 3 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)) |
| 18 | 10, 17 | pm2.61i 182 | . 2 ⊢ (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵) |
| 19 | 1, 18 | eqtri 2752 | 1 ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 evalSub ces 21979 eval cevl 21980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-evls 21981 df-evl 21982 |
| This theorem is referenced by: evlrhm 22003 evlsscasrng 22004 evlsvarsrng 22006 evl1fval1lem 22217 evl1sca 22221 evl1var 22223 pf1rcl 22236 mpfpf1 22238 pf1ind 22242 evlsevl 42559 mhphf4 42588 mzpmfp 42735 |
| Copyright terms: Public domain | W3C validator |