![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evlval | Structured version Visualization version GIF version |
Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
evlval.q | ⊢ 𝑄 = (𝐼 eval 𝑅) |
evlval.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
evlval | ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlval.q | . 2 ⊢ 𝑄 = (𝐼 eval 𝑅) | |
2 | oveq12 7421 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 evalSub 𝑟) = (𝐼 evalSub 𝑅)) | |
3 | fveq2 6891 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
4 | evlval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | eqtr4di 2789 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘𝑟) = 𝐵) |
7 | 2, 6 | fveq12d 6898 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝑖 evalSub 𝑟)‘(Base‘𝑟)) = ((𝐼 evalSub 𝑅)‘𝐵)) |
8 | df-evl 21947 | . . . 4 ⊢ eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟))) | |
9 | fvex 6904 | . . . 4 ⊢ ((𝐼 evalSub 𝑅)‘𝐵) ∈ V | |
10 | 7, 8, 9 | ovmpoa 7566 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)) |
11 | 8 | mpondm0 7651 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ∅) |
12 | 0fv 6935 | . . . . 5 ⊢ (∅‘𝐵) = ∅ | |
13 | 11, 12 | eqtr4di 2789 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = (∅‘𝐵)) |
14 | reldmevls 21958 | . . . . . 6 ⊢ Rel dom evalSub | |
15 | 14 | ovprc 7450 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 evalSub 𝑅) = ∅) |
16 | 15 | fveq1d 6893 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 evalSub 𝑅)‘𝐵) = (∅‘𝐵)) |
17 | 13, 16 | eqtr4d 2774 | . . 3 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)) |
18 | 10, 17 | pm2.61i 182 | . 2 ⊢ (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵) |
19 | 1, 18 | eqtri 2759 | 1 ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 evalSub ces 21944 eval cevl 21945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-evls 21946 df-evl 21947 |
This theorem is referenced by: evlrhm 21970 evlsscasrng 21971 evlsvarsrng 21973 evl1fval1lem 22169 evl1sca 22173 evl1var 22175 pf1rcl 22188 mpfpf1 22190 pf1ind 22194 evlsevl 41608 mhphf4 41637 mzpmfp 41950 |
Copyright terms: Public domain | W3C validator |