Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpmfp Structured version   Visualization version   GIF version

Theorem mzpmfp 42779
Description: Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.)
Assertion
Ref Expression
mzpmfp (mzPoly‘𝐼) = ran (𝐼 eval ℤring)

Proof of Theorem mzpmfp
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 21388 . . . . . 6 ℤ = (Base‘ℤring)
2 eqid 2731 . . . . . . . 8 (𝐼 eval ℤring) = (𝐼 eval ℤring)
32, 1evlval 22028 . . . . . . 7 (𝐼 eval ℤring) = ((𝐼 evalSub ℤring)‘ℤ)
43rneqi 5877 . . . . . 6 ran (𝐼 eval ℤring) = ran ((𝐼 evalSub ℤring)‘ℤ)
5 simpl 482 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → 𝐼 ∈ V)
6 zringcrng 21383 . . . . . . 7 ring ∈ CRing
76a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ℤring ∈ CRing)
8 zringring 21384 . . . . . . . 8 ring ∈ Ring
91subrgid 20486 . . . . . . . 8 (ℤring ∈ Ring → ℤ ∈ (SubRing‘ℤring))
108, 9ax-mp 5 . . . . . . 7 ℤ ∈ (SubRing‘ℤring)
1110a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ℤ ∈ (SubRing‘ℤring))
12 simpr 484 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
131, 4, 5, 7, 11, 12mpfconst 22034 . . . . 5 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑓}) ∈ ran (𝐼 eval ℤring))
14 simpl 482 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → 𝐼 ∈ V)
156a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → ℤring ∈ CRing)
1610a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → ℤ ∈ (SubRing‘ℤring))
17 simpr 484 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → 𝑓𝐼)
181, 4, 14, 15, 16, 17mpfproj 22035 . . . . 5 ((𝐼 ∈ V ∧ 𝑓𝐼) → (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) ∈ ran (𝐼 eval ℤring))
19 simp2r 1201 . . . . . 6 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → 𝑓 ∈ ran (𝐼 eval ℤring))
20 simp3r 1203 . . . . . 6 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → 𝑔 ∈ ran (𝐼 eval ℤring))
21 zringplusg 21389 . . . . . . 7 + = (+g‘ℤring)
224, 21mpfaddcl 22038 . . . . . 6 ((𝑓 ∈ ran (𝐼 eval ℤring) ∧ 𝑔 ∈ ran (𝐼 eval ℤring)) → (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring))
2319, 20, 22syl2anc 584 . . . . 5 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring))
24 zringmulr 21392 . . . . . . 7 · = (.r‘ℤring)
254, 24mpfmulcl 22039 . . . . . 6 ((𝑓 ∈ ran (𝐼 eval ℤring) ∧ 𝑔 ∈ ran (𝐼 eval ℤring)) → (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring))
2619, 20, 25syl2anc 584 . . . . 5 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring))
27 eleq1 2819 . . . . 5 (𝑏 = ((ℤ ↑m 𝐼) × {𝑓}) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ ((ℤ ↑m 𝐼) × {𝑓}) ∈ ran (𝐼 eval ℤring)))
28 eleq1 2819 . . . . 5 (𝑏 = (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) ∈ ran (𝐼 eval ℤring)))
29 eleq1 2819 . . . . 5 (𝑏 = 𝑓 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑓 ∈ ran (𝐼 eval ℤring)))
30 eleq1 2819 . . . . 5 (𝑏 = 𝑔 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑔 ∈ ran (𝐼 eval ℤring)))
31 eleq1 2819 . . . . 5 (𝑏 = (𝑓f + 𝑔) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring)))
32 eleq1 2819 . . . . 5 (𝑏 = (𝑓f · 𝑔) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring)))
33 eleq1 2819 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑎 ∈ ran (𝐼 eval ℤring)))
3413, 18, 23, 26, 27, 28, 29, 30, 31, 32, 33mzpindd 42778 . . . 4 ((𝐼 ∈ V ∧ 𝑎 ∈ (mzPoly‘𝐼)) → 𝑎 ∈ ran (𝐼 eval ℤring))
35 simprlr 779 . . . . . 6 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → 𝑥 ∈ (mzPoly‘𝐼))
36 simprrr 781 . . . . . 6 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → 𝑦 ∈ (mzPoly‘𝐼))
37 mzpadd 42770 . . . . . 6 ((𝑥 ∈ (mzPoly‘𝐼) ∧ 𝑦 ∈ (mzPoly‘𝐼)) → (𝑥f + 𝑦) ∈ (mzPoly‘𝐼))
3835, 36, 37syl2anc 584 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → (𝑥f + 𝑦) ∈ (mzPoly‘𝐼))
39 mzpmul 42771 . . . . . 6 ((𝑥 ∈ (mzPoly‘𝐼) ∧ 𝑦 ∈ (mzPoly‘𝐼)) → (𝑥f · 𝑦) ∈ (mzPoly‘𝐼))
4035, 36, 39syl2anc 584 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → (𝑥f · 𝑦) ∈ (mzPoly‘𝐼))
41 eleq1 2819 . . . . 5 (𝑏 = ((ℤ ↑m 𝐼) × {𝑥}) → (𝑏 ∈ (mzPoly‘𝐼) ↔ ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼)))
42 eleq1 2819 . . . . 5 (𝑏 = (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼)))
43 eleq1 2819 . . . . 5 (𝑏 = 𝑥 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑥 ∈ (mzPoly‘𝐼)))
44 eleq1 2819 . . . . 5 (𝑏 = 𝑦 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑦 ∈ (mzPoly‘𝐼)))
45 eleq1 2819 . . . . 5 (𝑏 = (𝑥f + 𝑦) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑥f + 𝑦) ∈ (mzPoly‘𝐼)))
46 eleq1 2819 . . . . 5 (𝑏 = (𝑥f · 𝑦) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑥f · 𝑦) ∈ (mzPoly‘𝐼)))
47 eleq1 2819 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑎 ∈ (mzPoly‘𝐼)))
48 mzpconst 42767 . . . . . 6 ((𝐼 ∈ V ∧ 𝑥 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼))
4948adantlr 715 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ 𝑥 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼))
50 mzpproj 42769 . . . . . 6 ((𝐼 ∈ V ∧ 𝑥𝐼) → (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼))
5150adantlr 715 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ 𝑥𝐼) → (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼))
52 simpr 484 . . . . 5 ((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) → 𝑎 ∈ ran (𝐼 eval ℤring))
531, 21, 24, 4, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52mpfind 22040 . . . 4 ((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) → 𝑎 ∈ (mzPoly‘𝐼))
5434, 53impbida 800 . . 3 (𝐼 ∈ V → (𝑎 ∈ (mzPoly‘𝐼) ↔ 𝑎 ∈ ran (𝐼 eval ℤring)))
5554eqrdv 2729 . 2 (𝐼 ∈ V → (mzPoly‘𝐼) = ran (𝐼 eval ℤring))
56 fvprc 6814 . . 3 𝐼 ∈ V → (mzPoly‘𝐼) = ∅)
57 df-evl 22008 . . . . . . 7 eval = (𝑎 ∈ V, 𝑏 ∈ V ↦ ((𝑎 evalSub 𝑏)‘(Base‘𝑏)))
5857reldmmpo 7480 . . . . . 6 Rel dom eval
5958ovprc1 7385 . . . . 5 𝐼 ∈ V → (𝐼 eval ℤring) = ∅)
6059rneqd 5878 . . . 4 𝐼 ∈ V → ran (𝐼 eval ℤring) = ran ∅)
61 rn0 5866 . . . 4 ran ∅ = ∅
6260, 61eqtrdi 2782 . . 3 𝐼 ∈ V → ran (𝐼 eval ℤring) = ∅)
6356, 62eqtr4d 2769 . 2 𝐼 ∈ V → (mzPoly‘𝐼) = ran (𝐼 eval ℤring))
6455, 63pm2.61i 182 1 (mzPoly‘𝐼) = ran (𝐼 eval ℤring)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  {csn 4576  cmpt 5172   × cxp 5614  ran crn 5617  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750   + caddc 11006   · cmul 11008  cz 12465  Basecbs 17117  Ringcrg 20149  CRingccrg 20150  SubRingcsubrg 20482  ringczring 21381   evalSub ces 22005   eval cevl 22006  mzPolycmzp 42754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-addf 11082  ax-mulf 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20459  df-subrg 20483  df-lmod 20793  df-lss 20863  df-lsp 20903  df-cnfld 21290  df-zring 21382  df-assa 21788  df-asp 21789  df-ascl 21790  df-psr 21844  df-mvr 21845  df-mpl 21846  df-evls 22007  df-evl 22008  df-mzpcl 42755  df-mzp 42756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator