Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpmfp Structured version   Visualization version   GIF version

Theorem mzpmfp 40569
Description: Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.)
Assertion
Ref Expression
mzpmfp (mzPoly‘𝐼) = ran (𝐼 eval ℤring)

Proof of Theorem mzpmfp
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 20676 . . . . . 6 ℤ = (Base‘ℤring)
2 eqid 2738 . . . . . . . 8 (𝐼 eval ℤring) = (𝐼 eval ℤring)
32, 1evlval 21305 . . . . . . 7 (𝐼 eval ℤring) = ((𝐼 evalSub ℤring)‘ℤ)
43rneqi 5846 . . . . . 6 ran (𝐼 eval ℤring) = ran ((𝐼 evalSub ℤring)‘ℤ)
5 simpl 483 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → 𝐼 ∈ V)
6 zringcrng 20672 . . . . . . 7 ring ∈ CRing
76a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ℤring ∈ CRing)
8 zringring 20673 . . . . . . . 8 ring ∈ Ring
91subrgid 20026 . . . . . . . 8 (ℤring ∈ Ring → ℤ ∈ (SubRing‘ℤring))
108, 9ax-mp 5 . . . . . . 7 ℤ ∈ (SubRing‘ℤring)
1110a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ℤ ∈ (SubRing‘ℤring))
12 simpr 485 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
131, 4, 5, 7, 11, 12mpfconst 21311 . . . . 5 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑓}) ∈ ran (𝐼 eval ℤring))
14 simpl 483 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → 𝐼 ∈ V)
156a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → ℤring ∈ CRing)
1610a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → ℤ ∈ (SubRing‘ℤring))
17 simpr 485 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → 𝑓𝐼)
181, 4, 14, 15, 16, 17mpfproj 21312 . . . . 5 ((𝐼 ∈ V ∧ 𝑓𝐼) → (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) ∈ ran (𝐼 eval ℤring))
19 simp2r 1199 . . . . . 6 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → 𝑓 ∈ ran (𝐼 eval ℤring))
20 simp3r 1201 . . . . . 6 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → 𝑔 ∈ ran (𝐼 eval ℤring))
21 zringplusg 20677 . . . . . . 7 + = (+g‘ℤring)
224, 21mpfaddcl 21315 . . . . . 6 ((𝑓 ∈ ran (𝐼 eval ℤring) ∧ 𝑔 ∈ ran (𝐼 eval ℤring)) → (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring))
2319, 20, 22syl2anc 584 . . . . 5 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring))
24 zringmulr 20679 . . . . . . 7 · = (.r‘ℤring)
254, 24mpfmulcl 21316 . . . . . 6 ((𝑓 ∈ ran (𝐼 eval ℤring) ∧ 𝑔 ∈ ran (𝐼 eval ℤring)) → (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring))
2619, 20, 25syl2anc 584 . . . . 5 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring))
27 eleq1 2826 . . . . 5 (𝑏 = ((ℤ ↑m 𝐼) × {𝑓}) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ ((ℤ ↑m 𝐼) × {𝑓}) ∈ ran (𝐼 eval ℤring)))
28 eleq1 2826 . . . . 5 (𝑏 = (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) ∈ ran (𝐼 eval ℤring)))
29 eleq1 2826 . . . . 5 (𝑏 = 𝑓 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑓 ∈ ran (𝐼 eval ℤring)))
30 eleq1 2826 . . . . 5 (𝑏 = 𝑔 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑔 ∈ ran (𝐼 eval ℤring)))
31 eleq1 2826 . . . . 5 (𝑏 = (𝑓f + 𝑔) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring)))
32 eleq1 2826 . . . . 5 (𝑏 = (𝑓f · 𝑔) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring)))
33 eleq1 2826 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑎 ∈ ran (𝐼 eval ℤring)))
3413, 18, 23, 26, 27, 28, 29, 30, 31, 32, 33mzpindd 40568 . . . 4 ((𝐼 ∈ V ∧ 𝑎 ∈ (mzPoly‘𝐼)) → 𝑎 ∈ ran (𝐼 eval ℤring))
35 simprlr 777 . . . . . 6 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → 𝑥 ∈ (mzPoly‘𝐼))
36 simprrr 779 . . . . . 6 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → 𝑦 ∈ (mzPoly‘𝐼))
37 mzpadd 40560 . . . . . 6 ((𝑥 ∈ (mzPoly‘𝐼) ∧ 𝑦 ∈ (mzPoly‘𝐼)) → (𝑥f + 𝑦) ∈ (mzPoly‘𝐼))
3835, 36, 37syl2anc 584 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → (𝑥f + 𝑦) ∈ (mzPoly‘𝐼))
39 mzpmul 40561 . . . . . 6 ((𝑥 ∈ (mzPoly‘𝐼) ∧ 𝑦 ∈ (mzPoly‘𝐼)) → (𝑥f · 𝑦) ∈ (mzPoly‘𝐼))
4035, 36, 39syl2anc 584 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → (𝑥f · 𝑦) ∈ (mzPoly‘𝐼))
41 eleq1 2826 . . . . 5 (𝑏 = ((ℤ ↑m 𝐼) × {𝑥}) → (𝑏 ∈ (mzPoly‘𝐼) ↔ ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼)))
42 eleq1 2826 . . . . 5 (𝑏 = (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼)))
43 eleq1 2826 . . . . 5 (𝑏 = 𝑥 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑥 ∈ (mzPoly‘𝐼)))
44 eleq1 2826 . . . . 5 (𝑏 = 𝑦 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑦 ∈ (mzPoly‘𝐼)))
45 eleq1 2826 . . . . 5 (𝑏 = (𝑥f + 𝑦) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑥f + 𝑦) ∈ (mzPoly‘𝐼)))
46 eleq1 2826 . . . . 5 (𝑏 = (𝑥f · 𝑦) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑥f · 𝑦) ∈ (mzPoly‘𝐼)))
47 eleq1 2826 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑎 ∈ (mzPoly‘𝐼)))
48 mzpconst 40557 . . . . . 6 ((𝐼 ∈ V ∧ 𝑥 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼))
4948adantlr 712 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ 𝑥 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼))
50 mzpproj 40559 . . . . . 6 ((𝐼 ∈ V ∧ 𝑥𝐼) → (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼))
5150adantlr 712 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ 𝑥𝐼) → (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼))
52 simpr 485 . . . . 5 ((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) → 𝑎 ∈ ran (𝐼 eval ℤring))
531, 21, 24, 4, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52mpfind 21317 . . . 4 ((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) → 𝑎 ∈ (mzPoly‘𝐼))
5434, 53impbida 798 . . 3 (𝐼 ∈ V → (𝑎 ∈ (mzPoly‘𝐼) ↔ 𝑎 ∈ ran (𝐼 eval ℤring)))
5554eqrdv 2736 . 2 (𝐼 ∈ V → (mzPoly‘𝐼) = ran (𝐼 eval ℤring))
56 fvprc 6766 . . 3 𝐼 ∈ V → (mzPoly‘𝐼) = ∅)
57 df-evl 21283 . . . . . . 7 eval = (𝑎 ∈ V, 𝑏 ∈ V ↦ ((𝑎 evalSub 𝑏)‘(Base‘𝑏)))
5857reldmmpo 7408 . . . . . 6 Rel dom eval
5958ovprc1 7314 . . . . 5 𝐼 ∈ V → (𝐼 eval ℤring) = ∅)
6059rneqd 5847 . . . 4 𝐼 ∈ V → ran (𝐼 eval ℤring) = ran ∅)
61 rn0 5835 . . . 4 ran ∅ = ∅
6260, 61eqtrdi 2794 . . 3 𝐼 ∈ V → ran (𝐼 eval ℤring) = ∅)
6356, 62eqtr4d 2781 . 2 𝐼 ∈ V → (mzPoly‘𝐼) = ran (𝐼 eval ℤring))
6455, 63pm2.61i 182 1 (mzPoly‘𝐼) = ran (𝐼 eval ℤring)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  {csn 4561  cmpt 5157   × cxp 5587  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  m cmap 8615   + caddc 10874   · cmul 10876  cz 12319  Basecbs 16912  Ringcrg 19783  CRingccrg 19784  SubRingcsubrg 20020  ringczring 20670   evalSub ces 21280   eval cevl 21281  mzPolycmzp 40544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-srg 19742  df-ring 19785  df-cring 19786  df-rnghom 19959  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-cnfld 20598  df-zring 20671  df-assa 21060  df-asp 21061  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-evls 21282  df-evl 21283  df-mzpcl 40545  df-mzp 40546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator