Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpmfp Structured version   Visualization version   GIF version

Theorem mzpmfp 41056
Description: Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.)
Assertion
Ref Expression
mzpmfp (mzPoly‘𝐼) = ran (𝐼 eval ℤring)

Proof of Theorem mzpmfp
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 20875 . . . . . 6 ℤ = (Base‘ℤring)
2 eqid 2736 . . . . . . . 8 (𝐼 eval ℤring) = (𝐼 eval ℤring)
32, 1evlval 21505 . . . . . . 7 (𝐼 eval ℤring) = ((𝐼 evalSub ℤring)‘ℤ)
43rneqi 5892 . . . . . 6 ran (𝐼 eval ℤring) = ran ((𝐼 evalSub ℤring)‘ℤ)
5 simpl 483 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → 𝐼 ∈ V)
6 zringcrng 20871 . . . . . . 7 ring ∈ CRing
76a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ℤring ∈ CRing)
8 zringring 20872 . . . . . . . 8 ring ∈ Ring
91subrgid 20224 . . . . . . . 8 (ℤring ∈ Ring → ℤ ∈ (SubRing‘ℤring))
108, 9ax-mp 5 . . . . . . 7 ℤ ∈ (SubRing‘ℤring)
1110a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ℤ ∈ (SubRing‘ℤring))
12 simpr 485 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
131, 4, 5, 7, 11, 12mpfconst 21511 . . . . 5 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑓}) ∈ ran (𝐼 eval ℤring))
14 simpl 483 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → 𝐼 ∈ V)
156a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → ℤring ∈ CRing)
1610a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → ℤ ∈ (SubRing‘ℤring))
17 simpr 485 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → 𝑓𝐼)
181, 4, 14, 15, 16, 17mpfproj 21512 . . . . 5 ((𝐼 ∈ V ∧ 𝑓𝐼) → (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) ∈ ran (𝐼 eval ℤring))
19 simp2r 1200 . . . . . 6 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → 𝑓 ∈ ran (𝐼 eval ℤring))
20 simp3r 1202 . . . . . 6 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → 𝑔 ∈ ran (𝐼 eval ℤring))
21 zringplusg 20876 . . . . . . 7 + = (+g‘ℤring)
224, 21mpfaddcl 21515 . . . . . 6 ((𝑓 ∈ ran (𝐼 eval ℤring) ∧ 𝑔 ∈ ran (𝐼 eval ℤring)) → (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring))
2319, 20, 22syl2anc 584 . . . . 5 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring))
24 zringmulr 20878 . . . . . . 7 · = (.r‘ℤring)
254, 24mpfmulcl 21516 . . . . . 6 ((𝑓 ∈ ran (𝐼 eval ℤring) ∧ 𝑔 ∈ ran (𝐼 eval ℤring)) → (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring))
2619, 20, 25syl2anc 584 . . . . 5 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring))
27 eleq1 2825 . . . . 5 (𝑏 = ((ℤ ↑m 𝐼) × {𝑓}) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ ((ℤ ↑m 𝐼) × {𝑓}) ∈ ran (𝐼 eval ℤring)))
28 eleq1 2825 . . . . 5 (𝑏 = (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) ∈ ran (𝐼 eval ℤring)))
29 eleq1 2825 . . . . 5 (𝑏 = 𝑓 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑓 ∈ ran (𝐼 eval ℤring)))
30 eleq1 2825 . . . . 5 (𝑏 = 𝑔 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑔 ∈ ran (𝐼 eval ℤring)))
31 eleq1 2825 . . . . 5 (𝑏 = (𝑓f + 𝑔) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring)))
32 eleq1 2825 . . . . 5 (𝑏 = (𝑓f · 𝑔) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring)))
33 eleq1 2825 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑎 ∈ ran (𝐼 eval ℤring)))
3413, 18, 23, 26, 27, 28, 29, 30, 31, 32, 33mzpindd 41055 . . . 4 ((𝐼 ∈ V ∧ 𝑎 ∈ (mzPoly‘𝐼)) → 𝑎 ∈ ran (𝐼 eval ℤring))
35 simprlr 778 . . . . . 6 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → 𝑥 ∈ (mzPoly‘𝐼))
36 simprrr 780 . . . . . 6 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → 𝑦 ∈ (mzPoly‘𝐼))
37 mzpadd 41047 . . . . . 6 ((𝑥 ∈ (mzPoly‘𝐼) ∧ 𝑦 ∈ (mzPoly‘𝐼)) → (𝑥f + 𝑦) ∈ (mzPoly‘𝐼))
3835, 36, 37syl2anc 584 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → (𝑥f + 𝑦) ∈ (mzPoly‘𝐼))
39 mzpmul 41048 . . . . . 6 ((𝑥 ∈ (mzPoly‘𝐼) ∧ 𝑦 ∈ (mzPoly‘𝐼)) → (𝑥f · 𝑦) ∈ (mzPoly‘𝐼))
4035, 36, 39syl2anc 584 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → (𝑥f · 𝑦) ∈ (mzPoly‘𝐼))
41 eleq1 2825 . . . . 5 (𝑏 = ((ℤ ↑m 𝐼) × {𝑥}) → (𝑏 ∈ (mzPoly‘𝐼) ↔ ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼)))
42 eleq1 2825 . . . . 5 (𝑏 = (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼)))
43 eleq1 2825 . . . . 5 (𝑏 = 𝑥 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑥 ∈ (mzPoly‘𝐼)))
44 eleq1 2825 . . . . 5 (𝑏 = 𝑦 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑦 ∈ (mzPoly‘𝐼)))
45 eleq1 2825 . . . . 5 (𝑏 = (𝑥f + 𝑦) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑥f + 𝑦) ∈ (mzPoly‘𝐼)))
46 eleq1 2825 . . . . 5 (𝑏 = (𝑥f · 𝑦) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑥f · 𝑦) ∈ (mzPoly‘𝐼)))
47 eleq1 2825 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑎 ∈ (mzPoly‘𝐼)))
48 mzpconst 41044 . . . . . 6 ((𝐼 ∈ V ∧ 𝑥 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼))
4948adantlr 713 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ 𝑥 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼))
50 mzpproj 41046 . . . . . 6 ((𝐼 ∈ V ∧ 𝑥𝐼) → (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼))
5150adantlr 713 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ 𝑥𝐼) → (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼))
52 simpr 485 . . . . 5 ((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) → 𝑎 ∈ ran (𝐼 eval ℤring))
531, 21, 24, 4, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52mpfind 21517 . . . 4 ((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) → 𝑎 ∈ (mzPoly‘𝐼))
5434, 53impbida 799 . . 3 (𝐼 ∈ V → (𝑎 ∈ (mzPoly‘𝐼) ↔ 𝑎 ∈ ran (𝐼 eval ℤring)))
5554eqrdv 2734 . 2 (𝐼 ∈ V → (mzPoly‘𝐼) = ran (𝐼 eval ℤring))
56 fvprc 6834 . . 3 𝐼 ∈ V → (mzPoly‘𝐼) = ∅)
57 df-evl 21483 . . . . . . 7 eval = (𝑎 ∈ V, 𝑏 ∈ V ↦ ((𝑎 evalSub 𝑏)‘(Base‘𝑏)))
5857reldmmpo 7490 . . . . . 6 Rel dom eval
5958ovprc1 7396 . . . . 5 𝐼 ∈ V → (𝐼 eval ℤring) = ∅)
6059rneqd 5893 . . . 4 𝐼 ∈ V → ran (𝐼 eval ℤring) = ran ∅)
61 rn0 5881 . . . 4 ran ∅ = ∅
6260, 61eqtrdi 2792 . . 3 𝐼 ∈ V → ran (𝐼 eval ℤring) = ∅)
6356, 62eqtr4d 2779 . 2 𝐼 ∈ V → (mzPoly‘𝐼) = ran (𝐼 eval ℤring))
6455, 63pm2.61i 182 1 (mzPoly‘𝐼) = ran (𝐼 eval ℤring)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  c0 4282  {csn 4586  cmpt 5188   × cxp 5631  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  m cmap 8765   + caddc 11054   · cmul 11056  cz 12499  Basecbs 17083  Ringcrg 19964  CRingccrg 19965  SubRingcsubrg 20218  ringczring 20869   evalSub ces 21480   eval cevl 21481  mzPolycmzp 41031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-cring 19967  df-rnghom 20146  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-cnfld 20797  df-zring 20870  df-assa 21259  df-asp 21260  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-evls 21482  df-evl 21483  df-mzpcl 41032  df-mzp 41033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator