Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpmfp Structured version   Visualization version   GIF version

Theorem mzpmfp 42735
Description: Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.)
Assertion
Ref Expression
mzpmfp (mzPoly‘𝐼) = ran (𝐼 eval ℤring)

Proof of Theorem mzpmfp
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 21363 . . . . . 6 ℤ = (Base‘ℤring)
2 eqid 2729 . . . . . . . 8 (𝐼 eval ℤring) = (𝐼 eval ℤring)
32, 1evlval 22002 . . . . . . 7 (𝐼 eval ℤring) = ((𝐼 evalSub ℤring)‘ℤ)
43rneqi 5901 . . . . . 6 ran (𝐼 eval ℤring) = ran ((𝐼 evalSub ℤring)‘ℤ)
5 simpl 482 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → 𝐼 ∈ V)
6 zringcrng 21358 . . . . . . 7 ring ∈ CRing
76a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ℤring ∈ CRing)
8 zringring 21359 . . . . . . . 8 ring ∈ Ring
91subrgid 20482 . . . . . . . 8 (ℤring ∈ Ring → ℤ ∈ (SubRing‘ℤring))
108, 9ax-mp 5 . . . . . . 7 ℤ ∈ (SubRing‘ℤring)
1110a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ℤ ∈ (SubRing‘ℤring))
12 simpr 484 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
131, 4, 5, 7, 11, 12mpfconst 22008 . . . . 5 ((𝐼 ∈ V ∧ 𝑓 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑓}) ∈ ran (𝐼 eval ℤring))
14 simpl 482 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → 𝐼 ∈ V)
156a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → ℤring ∈ CRing)
1610a1i 11 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → ℤ ∈ (SubRing‘ℤring))
17 simpr 484 . . . . . 6 ((𝐼 ∈ V ∧ 𝑓𝐼) → 𝑓𝐼)
181, 4, 14, 15, 16, 17mpfproj 22009 . . . . 5 ((𝐼 ∈ V ∧ 𝑓𝐼) → (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) ∈ ran (𝐼 eval ℤring))
19 simp2r 1201 . . . . . 6 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → 𝑓 ∈ ran (𝐼 eval ℤring))
20 simp3r 1203 . . . . . 6 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → 𝑔 ∈ ran (𝐼 eval ℤring))
21 zringplusg 21364 . . . . . . 7 + = (+g‘ℤring)
224, 21mpfaddcl 22012 . . . . . 6 ((𝑓 ∈ ran (𝐼 eval ℤring) ∧ 𝑔 ∈ ran (𝐼 eval ℤring)) → (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring))
2319, 20, 22syl2anc 584 . . . . 5 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring))
24 zringmulr 21367 . . . . . . 7 · = (.r‘ℤring)
254, 24mpfmulcl 22013 . . . . . 6 ((𝑓 ∈ ran (𝐼 eval ℤring) ∧ 𝑔 ∈ ran (𝐼 eval ℤring)) → (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring))
2619, 20, 25syl2anc 584 . . . . 5 ((𝐼 ∈ V ∧ (𝑓:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑓 ∈ ran (𝐼 eval ℤring)) ∧ (𝑔:(ℤ ↑m 𝐼)⟶ℤ ∧ 𝑔 ∈ ran (𝐼 eval ℤring))) → (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring))
27 eleq1 2816 . . . . 5 (𝑏 = ((ℤ ↑m 𝐼) × {𝑓}) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ ((ℤ ↑m 𝐼) × {𝑓}) ∈ ran (𝐼 eval ℤring)))
28 eleq1 2816 . . . . 5 (𝑏 = (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑔 ∈ (ℤ ↑m 𝐼) ↦ (𝑔𝑓)) ∈ ran (𝐼 eval ℤring)))
29 eleq1 2816 . . . . 5 (𝑏 = 𝑓 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑓 ∈ ran (𝐼 eval ℤring)))
30 eleq1 2816 . . . . 5 (𝑏 = 𝑔 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑔 ∈ ran (𝐼 eval ℤring)))
31 eleq1 2816 . . . . 5 (𝑏 = (𝑓f + 𝑔) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑓f + 𝑔) ∈ ran (𝐼 eval ℤring)))
32 eleq1 2816 . . . . 5 (𝑏 = (𝑓f · 𝑔) → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ (𝑓f · 𝑔) ∈ ran (𝐼 eval ℤring)))
33 eleq1 2816 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ ran (𝐼 eval ℤring) ↔ 𝑎 ∈ ran (𝐼 eval ℤring)))
3413, 18, 23, 26, 27, 28, 29, 30, 31, 32, 33mzpindd 42734 . . . 4 ((𝐼 ∈ V ∧ 𝑎 ∈ (mzPoly‘𝐼)) → 𝑎 ∈ ran (𝐼 eval ℤring))
35 simprlr 779 . . . . . 6 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → 𝑥 ∈ (mzPoly‘𝐼))
36 simprrr 781 . . . . . 6 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → 𝑦 ∈ (mzPoly‘𝐼))
37 mzpadd 42726 . . . . . 6 ((𝑥 ∈ (mzPoly‘𝐼) ∧ 𝑦 ∈ (mzPoly‘𝐼)) → (𝑥f + 𝑦) ∈ (mzPoly‘𝐼))
3835, 36, 37syl2anc 584 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → (𝑥f + 𝑦) ∈ (mzPoly‘𝐼))
39 mzpmul 42727 . . . . . 6 ((𝑥 ∈ (mzPoly‘𝐼) ∧ 𝑦 ∈ (mzPoly‘𝐼)) → (𝑥f · 𝑦) ∈ (mzPoly‘𝐼))
4035, 36, 39syl2anc 584 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ ((𝑥 ∈ ran (𝐼 eval ℤring) ∧ 𝑥 ∈ (mzPoly‘𝐼)) ∧ (𝑦 ∈ ran (𝐼 eval ℤring) ∧ 𝑦 ∈ (mzPoly‘𝐼)))) → (𝑥f · 𝑦) ∈ (mzPoly‘𝐼))
41 eleq1 2816 . . . . 5 (𝑏 = ((ℤ ↑m 𝐼) × {𝑥}) → (𝑏 ∈ (mzPoly‘𝐼) ↔ ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼)))
42 eleq1 2816 . . . . 5 (𝑏 = (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼)))
43 eleq1 2816 . . . . 5 (𝑏 = 𝑥 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑥 ∈ (mzPoly‘𝐼)))
44 eleq1 2816 . . . . 5 (𝑏 = 𝑦 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑦 ∈ (mzPoly‘𝐼)))
45 eleq1 2816 . . . . 5 (𝑏 = (𝑥f + 𝑦) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑥f + 𝑦) ∈ (mzPoly‘𝐼)))
46 eleq1 2816 . . . . 5 (𝑏 = (𝑥f · 𝑦) → (𝑏 ∈ (mzPoly‘𝐼) ↔ (𝑥f · 𝑦) ∈ (mzPoly‘𝐼)))
47 eleq1 2816 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ (mzPoly‘𝐼) ↔ 𝑎 ∈ (mzPoly‘𝐼)))
48 mzpconst 42723 . . . . . 6 ((𝐼 ∈ V ∧ 𝑥 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼))
4948adantlr 715 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ 𝑥 ∈ ℤ) → ((ℤ ↑m 𝐼) × {𝑥}) ∈ (mzPoly‘𝐼))
50 mzpproj 42725 . . . . . 6 ((𝐼 ∈ V ∧ 𝑥𝐼) → (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼))
5150adantlr 715 . . . . 5 (((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) ∧ 𝑥𝐼) → (𝑦 ∈ (ℤ ↑m 𝐼) ↦ (𝑦𝑥)) ∈ (mzPoly‘𝐼))
52 simpr 484 . . . . 5 ((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) → 𝑎 ∈ ran (𝐼 eval ℤring))
531, 21, 24, 4, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52mpfind 22014 . . . 4 ((𝐼 ∈ V ∧ 𝑎 ∈ ran (𝐼 eval ℤring)) → 𝑎 ∈ (mzPoly‘𝐼))
5434, 53impbida 800 . . 3 (𝐼 ∈ V → (𝑎 ∈ (mzPoly‘𝐼) ↔ 𝑎 ∈ ran (𝐼 eval ℤring)))
5554eqrdv 2727 . 2 (𝐼 ∈ V → (mzPoly‘𝐼) = ran (𝐼 eval ℤring))
56 fvprc 6850 . . 3 𝐼 ∈ V → (mzPoly‘𝐼) = ∅)
57 df-evl 21982 . . . . . . 7 eval = (𝑎 ∈ V, 𝑏 ∈ V ↦ ((𝑎 evalSub 𝑏)‘(Base‘𝑏)))
5857reldmmpo 7523 . . . . . 6 Rel dom eval
5958ovprc1 7426 . . . . 5 𝐼 ∈ V → (𝐼 eval ℤring) = ∅)
6059rneqd 5902 . . . 4 𝐼 ∈ V → ran (𝐼 eval ℤring) = ran ∅)
61 rn0 5889 . . . 4 ran ∅ = ∅
6260, 61eqtrdi 2780 . . 3 𝐼 ∈ V → ran (𝐼 eval ℤring) = ∅)
6356, 62eqtr4d 2767 . 2 𝐼 ∈ V → (mzPoly‘𝐼) = ran (𝐼 eval ℤring))
6455, 63pm2.61i 182 1 (mzPoly‘𝐼) = ran (𝐼 eval ℤring)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  {csn 4589  cmpt 5188   × cxp 5636  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799   + caddc 11071   · cmul 11073  cz 12529  Basecbs 17179  Ringcrg 20142  CRingccrg 20143  SubRingcsubrg 20478  ringczring 21356   evalSub ces 21979   eval cevl 21980  mzPolycmzp 42710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-cnfld 21265  df-zring 21357  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-evls 21981  df-evl 21982  df-mzpcl 42711  df-mzp 42712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator