| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1137 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → 𝑥 ∈ 𝐼) |
| 2 | | evlslem4.x |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑋 ∈ 𝐵) |
| 3 | 2 | 3adant3 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → 𝑋 ∈ 𝐵) |
| 4 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐼 ↦ 𝑋) = (𝑥 ∈ 𝐼 ↦ 𝑋) |
| 5 | 4 | fvmpt2 7002 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) = 𝑋) |
| 6 | 1, 3, 5 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) = 𝑋) |
| 7 | | simp3 1138 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → 𝑦 ∈ 𝐽) |
| 8 | | evlslem4.y |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → 𝑌 ∈ 𝐵) |
| 9 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐽 ↦ 𝑌) = (𝑦 ∈ 𝐽 ↦ 𝑌) |
| 10 | 9 | fvmpt2 7002 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐽 ∧ 𝑌 ∈ 𝐵) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦) = 𝑌) |
| 11 | 7, 8, 10 | 3imp3i2an 1346 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦) = 𝑌) |
| 12 | 6, 11 | oveq12d 7428 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)) = (𝑋 · 𝑌)) |
| 13 | 12 | mpoeq3dva 7489 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))) = (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌))) |
| 14 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑖(((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)) |
| 15 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑗(((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)) |
| 16 | | nffvmpt1 6892 |
. . . . . . 7
⊢
Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) |
| 17 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑥
· |
| 18 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑥((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗) |
| 19 | 16, 17, 18 | nfov 7440 |
. . . . . 6
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) |
| 20 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑦((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) |
| 21 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑦
· |
| 22 | | nffvmpt1 6892 |
. . . . . . 7
⊢
Ⅎ𝑦((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗) |
| 23 | 20, 21, 22 | nfov 7440 |
. . . . . 6
⊢
Ⅎ𝑦(((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) |
| 24 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑥 = 𝑖 → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) = ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖)) |
| 25 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑦 = 𝑗 → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦) = ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) |
| 26 | 24, 25 | oveqan12d 7429 |
. . . . . 6
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦)) = (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) |
| 27 | 14, 15, 19, 23, 26 | cbvmpo 7506 |
. . . . 5
⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))) = (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) |
| 28 | | vex 3468 |
. . . . . . . 8
⊢ 𝑖 ∈ V |
| 29 | | vex 3468 |
. . . . . . . 8
⊢ 𝑗 ∈ V |
| 30 | 28, 29 | eqop2 8036 |
. . . . . . 7
⊢ (𝑧 = 〈𝑖, 𝑗〉 ↔ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) = 𝑖 ∧ (2nd
‘𝑧) = 𝑗))) |
| 31 | | fveq2 6881 |
. . . . . . . 8
⊢
((1st ‘𝑧) = 𝑖 → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) = ((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖)) |
| 32 | | fveq2 6881 |
. . . . . . . 8
⊢
((2nd ‘𝑧) = 𝑗 → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧)) = ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗)) |
| 33 | 31, 32 | oveqan12d 7429 |
. . . . . . 7
⊢
(((1st ‘𝑧) = 𝑖 ∧ (2nd ‘𝑧) = 𝑗) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧))) = (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) |
| 34 | 30, 33 | simplbiim 504 |
. . . . . 6
⊢ (𝑧 = 〈𝑖, 𝑗〉 → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧))) = (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) |
| 35 | 34 | mpompt 7526 |
. . . . 5
⊢ (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧)))) = (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑖) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑗))) |
| 36 | 27, 35 | eqtr4i 2762 |
. . . 4
⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘𝑥) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘𝑦))) = (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧)))) |
| 37 | 13, 36 | eqtr3di 2786 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)) = (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧))))) |
| 38 | 37 | oveq1d 7425 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) = ((𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧)))) supp 0 )) |
| 39 | | difxp 6158 |
. . . . . 6
⊢ ((𝐼 × 𝐽) ∖ (((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) = (((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )))) |
| 40 | 39 | eleq2i 2827 |
. . . . 5
⊢ (𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) ↔ 𝑧 ∈ (((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))))) |
| 41 | | elun 4133 |
. . . . 5
⊢ (𝑧 ∈ (((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )))) ↔ (𝑧 ∈ ((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))))) |
| 42 | 40, 41 | bitri 275 |
. . . 4
⊢ (𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) ↔ (𝑧 ∈ ((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))))) |
| 43 | | xp1st 8025 |
. . . . . . . 8
⊢ (𝑧 ∈ ((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽) → (1st
‘𝑧) ∈ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ))) |
| 44 | 2 | fmpttd 7110 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵) |
| 45 | | ssidd 3987 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) ⊆ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) |
| 46 | | evlslem4.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 47 | | evlslem4.z |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
| 48 | 47 | fvexi 6895 |
. . . . . . . . . 10
⊢ 0 ∈
V |
| 49 | 48 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ V) |
| 50 | 44, 45, 46, 49 | suppssr 8199 |
. . . . . . . 8
⊢ ((𝜑 ∧ (1st
‘𝑧) ∈ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ))) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) = 0 ) |
| 51 | 43, 50 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽)) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) = 0 ) |
| 52 | 51 | oveq1d 7425 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽)) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧))) = ( 0 · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧)))) |
| 53 | | evlslem4.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 54 | 8 | fmpttd 7110 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ 𝑌):𝐽⟶𝐵) |
| 55 | | xp2nd 8026 |
. . . . . . . 8
⊢ (𝑧 ∈ ((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽) → (2nd
‘𝑧) ∈ 𝐽) |
| 56 | | ffvelcdm 7076 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝐽 ↦ 𝑌):𝐽⟶𝐵 ∧ (2nd ‘𝑧) ∈ 𝐽) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧)) ∈ 𝐵) |
| 57 | 54, 55, 56 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽)) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧)) ∈ 𝐵) |
| 58 | | evlslem4.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
| 59 | | evlslem4.t |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
| 60 | 58, 59, 47 | ringlz 20258 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧)) ∈ 𝐵) → ( 0 · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧))) = 0 ) |
| 61 | 53, 57, 60 | syl2an2r 685 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽)) → ( 0 · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧))) = 0 ) |
| 62 | 52, 61 | eqtrd 2771 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽)) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧))) = 0 ) |
| 63 | | xp2nd 8026 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) → (2nd
‘𝑧) ∈ (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) |
| 64 | | ssidd 3987 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ) ⊆ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )) |
| 65 | | evlslem4.j |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ 𝑊) |
| 66 | 54, 64, 65, 49 | suppssr 8199 |
. . . . . . . 8
⊢ ((𝜑 ∧ (2nd
‘𝑧) ∈ (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧)) = 0 ) |
| 67 | 63, 66 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )))) → ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧)) = 0 ) |
| 68 | 67 | oveq2d 7426 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )))) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧))) = (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · 0 )) |
| 69 | | xp1st 8025 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) → (1st
‘𝑧) ∈ 𝐼) |
| 70 | | ffvelcdm 7076 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵 ∧ (1st ‘𝑧) ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) ∈ 𝐵) |
| 71 | 44, 69, 70 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )))) → ((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) ∈ 𝐵) |
| 72 | 58, 59, 47 | ringrz 20259 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ ((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) ∈ 𝐵) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · 0 ) = 0 ) |
| 73 | 53, 71, 72 | syl2an2r 685 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )))) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · 0 ) = 0 ) |
| 74 | 68, 73 | eqtrd 2771 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )))) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧))) = 0 ) |
| 75 | 62, 74 | jaodan 959 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ((𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))))) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧))) = 0 ) |
| 76 | 42, 75 | sylan2b 594 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 )))) → (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧))) = 0 ) |
| 77 | 46, 65 | xpexd 7750 |
. . 3
⊢ (𝜑 → (𝐼 × 𝐽) ∈ V) |
| 78 | 76, 77 | suppss2 8204 |
. 2
⊢ (𝜑 → ((𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥 ∈ 𝐼 ↦ 𝑋)‘(1st ‘𝑧)) · ((𝑦 ∈ 𝐽 ↦ 𝑌)‘(2nd ‘𝑧)))) supp 0 ) ⊆ (((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) |
| 79 | 38, 78 | eqsstrd 3998 |
1
⊢ (𝜑 → ((𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) |