MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem4 Structured version   Visualization version   GIF version

Theorem evlslem4 22100
Description: The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
evlslem4.b 𝐵 = (Base‘𝑅)
evlslem4.z 0 = (0g𝑅)
evlslem4.t · = (.r𝑅)
evlslem4.r (𝜑𝑅 ∈ Ring)
evlslem4.x ((𝜑𝑥𝐼) → 𝑋𝐵)
evlslem4.y ((𝜑𝑦𝐽) → 𝑌𝐵)
evlslem4.i (𝜑𝐼𝑉)
evlslem4.j (𝜑𝐽𝑊)
Assertion
Ref Expression
evlslem4 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
Distinct variable groups:   𝑥,𝑦,𝐼   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑦,𝑋   𝑥,𝐵,𝑦   𝑥, · ,𝑦   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥)   𝑌(𝑦)   0 (𝑥,𝑦)

Proof of Theorem evlslem4
Dummy variables 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1138 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑥𝐼)
2 evlslem4.x . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑋𝐵)
323adant3 1133 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑋𝐵)
4 eqid 2737 . . . . . . . 8 (𝑥𝐼𝑋) = (𝑥𝐼𝑋)
54fvmpt2 7027 . . . . . . 7 ((𝑥𝐼𝑋𝐵) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
61, 3, 5syl2anc 584 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
7 simp3 1139 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑦𝐽)
8 evlslem4.y . . . . . . 7 ((𝜑𝑦𝐽) → 𝑌𝐵)
9 eqid 2737 . . . . . . . 8 (𝑦𝐽𝑌) = (𝑦𝐽𝑌)
109fvmpt2 7027 . . . . . . 7 ((𝑦𝐽𝑌𝐵) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
117, 8, 103imp3i2an 1346 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
126, 11oveq12d 7449 . . . . 5 ((𝜑𝑥𝐼𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
1312mpoeq3dva 7510 . . . 4 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
14 nfcv 2905 . . . . . 6 𝑖(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
15 nfcv 2905 . . . . . 6 𝑗(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
16 nffvmpt1 6917 . . . . . . 7 𝑥((𝑥𝐼𝑋)‘𝑖)
17 nfcv 2905 . . . . . . 7 𝑥 ·
18 nfcv 2905 . . . . . . 7 𝑥((𝑦𝐽𝑌)‘𝑗)
1916, 17, 18nfov 7461 . . . . . 6 𝑥(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
20 nfcv 2905 . . . . . . 7 𝑦((𝑥𝐼𝑋)‘𝑖)
21 nfcv 2905 . . . . . . 7 𝑦 ·
22 nffvmpt1 6917 . . . . . . 7 𝑦((𝑦𝐽𝑌)‘𝑗)
2320, 21, 22nfov 7461 . . . . . 6 𝑦(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
24 fveq2 6906 . . . . . . 7 (𝑥 = 𝑖 → ((𝑥𝐼𝑋)‘𝑥) = ((𝑥𝐼𝑋)‘𝑖))
25 fveq2 6906 . . . . . . 7 (𝑦 = 𝑗 → ((𝑦𝐽𝑌)‘𝑦) = ((𝑦𝐽𝑌)‘𝑗))
2624, 25oveqan12d 7450 . . . . . 6 ((𝑥 = 𝑖𝑦 = 𝑗) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
2714, 15, 19, 23, 26cbvmpo 7527 . . . . 5 (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
28 vex 3484 . . . . . . . 8 𝑖 ∈ V
29 vex 3484 . . . . . . . 8 𝑗 ∈ V
3028, 29eqop2 8057 . . . . . . 7 (𝑧 = ⟨𝑖, 𝑗⟩ ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) = 𝑖 ∧ (2nd𝑧) = 𝑗)))
31 fveq2 6906 . . . . . . . 8 ((1st𝑧) = 𝑖 → ((𝑥𝐼𝑋)‘(1st𝑧)) = ((𝑥𝐼𝑋)‘𝑖))
32 fveq2 6906 . . . . . . . 8 ((2nd𝑧) = 𝑗 → ((𝑦𝐽𝑌)‘(2nd𝑧)) = ((𝑦𝐽𝑌)‘𝑗))
3331, 32oveqan12d 7450 . . . . . . 7 (((1st𝑧) = 𝑖 ∧ (2nd𝑧) = 𝑗) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
3430, 33simplbiim 504 . . . . . 6 (𝑧 = ⟨𝑖, 𝑗⟩ → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
3534mpompt 7547 . . . . 5 (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) = (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
3627, 35eqtr4i 2768 . . . 4 (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))))
3713, 36eqtr3di 2792 . . 3 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) = (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))))
3837oveq1d 7446 . 2 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) = ((𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) supp 0 ))
39 difxp 6184 . . . . . 6 ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) = (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))))
4039eleq2i 2833 . . . . 5 (𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) ↔ 𝑧 ∈ (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
41 elun 4153 . . . . 5 (𝑧 ∈ (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) ↔ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
4240, 41bitri 275 . . . 4 (𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) ↔ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
43 xp1st 8046 . . . . . . . 8 (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) → (1st𝑧) ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
442fmpttd 7135 . . . . . . . . 9 (𝜑 → (𝑥𝐼𝑋):𝐼𝐵)
45 ssidd 4007 . . . . . . . . 9 (𝜑 → ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 ))
46 evlslem4.i . . . . . . . . 9 (𝜑𝐼𝑉)
47 evlslem4.z . . . . . . . . . . 11 0 = (0g𝑅)
4847fvexi 6920 . . . . . . . . . 10 0 ∈ V
4948a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
5044, 45, 46, 49suppssr 8220 . . . . . . . 8 ((𝜑 ∧ (1st𝑧) ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 ))) → ((𝑥𝐼𝑋)‘(1st𝑧)) = 0 )
5143, 50sylan2 593 . . . . . . 7 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ((𝑥𝐼𝑋)‘(1st𝑧)) = 0 )
5251oveq1d 7446 . . . . . 6 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))))
53 evlslem4.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
548fmpttd 7135 . . . . . . . 8 (𝜑 → (𝑦𝐽𝑌):𝐽𝐵)
55 xp2nd 8047 . . . . . . . 8 (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) → (2nd𝑧) ∈ 𝐽)
56 ffvelcdm 7101 . . . . . . . 8 (((𝑦𝐽𝑌):𝐽𝐵 ∧ (2nd𝑧) ∈ 𝐽) → ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵)
5754, 55, 56syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵)
58 evlslem4.b . . . . . . . 8 𝐵 = (Base‘𝑅)
59 evlslem4.t . . . . . . . 8 · = (.r𝑅)
6058, 59, 47ringlz 20290 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵) → ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
6153, 57, 60syl2an2r 685 . . . . . 6 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
6252, 61eqtrd 2777 . . . . 5 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
63 xp2nd 8047 . . . . . . . 8 (𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → (2nd𝑧) ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
64 ssidd 4007 . . . . . . . . 9 (𝜑 → ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 ))
65 evlslem4.j . . . . . . . . 9 (𝜑𝐽𝑊)
6654, 64, 65, 49suppssr 8220 . . . . . . . 8 ((𝜑 ∧ (2nd𝑧) ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → ((𝑦𝐽𝑌)‘(2nd𝑧)) = 0 )
6763, 66sylan2 593 . . . . . . 7 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → ((𝑦𝐽𝑌)‘(2nd𝑧)) = 0 )
6867oveq2d 7447 . . . . . 6 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ))
69 xp1st 8046 . . . . . . . 8 (𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → (1st𝑧) ∈ 𝐼)
70 ffvelcdm 7101 . . . . . . . 8 (((𝑥𝐼𝑋):𝐼𝐵 ∧ (1st𝑧) ∈ 𝐼) → ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵)
7144, 69, 70syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵)
7258, 59, 47ringrz 20291 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵) → (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ) = 0 )
7353, 71, 72syl2an2r 685 . . . . . 6 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ) = 0 )
7468, 73eqtrd 2777 . . . . 5 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
7562, 74jaodan 960 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
7642, 75sylan2b 594 . . 3 ((𝜑𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
7746, 65xpexd 7771 . . 3 (𝜑 → (𝐼 × 𝐽) ∈ V)
7876, 77suppss2 8225 . 2 (𝜑 → ((𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
7938, 78eqsstrd 4018 1 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  cun 3949  wss 3951  cop 4632  cmpt 5225   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  1st c1st 8012  2nd c2nd 8013   supp csupp 8185  Basecbs 17247  .rcmulr 17298  0gc0g 17484  Ringcrg 20230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232
This theorem is referenced by:  evlslem2  22103
  Copyright terms: Public domain W3C validator