MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem4 Structured version   Visualization version   GIF version

Theorem evlslem4 21981
Description: The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
evlslem4.b 𝐵 = (Base‘𝑅)
evlslem4.z 0 = (0g𝑅)
evlslem4.t · = (.r𝑅)
evlslem4.r (𝜑𝑅 ∈ Ring)
evlslem4.x ((𝜑𝑥𝐼) → 𝑋𝐵)
evlslem4.y ((𝜑𝑦𝐽) → 𝑌𝐵)
evlslem4.i (𝜑𝐼𝑉)
evlslem4.j (𝜑𝐽𝑊)
Assertion
Ref Expression
evlslem4 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
Distinct variable groups:   𝑥,𝑦,𝐼   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑦,𝑋   𝑥,𝐵,𝑦   𝑥, · ,𝑦   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥)   𝑌(𝑦)   0 (𝑥,𝑦)

Proof of Theorem evlslem4
Dummy variables 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑥𝐼)
2 evlslem4.x . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑋𝐵)
323adant3 1132 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑋𝐵)
4 eqid 2729 . . . . . . . 8 (𝑥𝐼𝑋) = (𝑥𝐼𝑋)
54fvmpt2 6941 . . . . . . 7 ((𝑥𝐼𝑋𝐵) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
61, 3, 5syl2anc 584 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
7 simp3 1138 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑦𝐽)
8 evlslem4.y . . . . . . 7 ((𝜑𝑦𝐽) → 𝑌𝐵)
9 eqid 2729 . . . . . . . 8 (𝑦𝐽𝑌) = (𝑦𝐽𝑌)
109fvmpt2 6941 . . . . . . 7 ((𝑦𝐽𝑌𝐵) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
117, 8, 103imp3i2an 1346 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
126, 11oveq12d 7367 . . . . 5 ((𝜑𝑥𝐼𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
1312mpoeq3dva 7426 . . . 4 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
14 nfcv 2891 . . . . . 6 𝑖(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
15 nfcv 2891 . . . . . 6 𝑗(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
16 nffvmpt1 6833 . . . . . . 7 𝑥((𝑥𝐼𝑋)‘𝑖)
17 nfcv 2891 . . . . . . 7 𝑥 ·
18 nfcv 2891 . . . . . . 7 𝑥((𝑦𝐽𝑌)‘𝑗)
1916, 17, 18nfov 7379 . . . . . 6 𝑥(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
20 nfcv 2891 . . . . . . 7 𝑦((𝑥𝐼𝑋)‘𝑖)
21 nfcv 2891 . . . . . . 7 𝑦 ·
22 nffvmpt1 6833 . . . . . . 7 𝑦((𝑦𝐽𝑌)‘𝑗)
2320, 21, 22nfov 7379 . . . . . 6 𝑦(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
24 fveq2 6822 . . . . . . 7 (𝑥 = 𝑖 → ((𝑥𝐼𝑋)‘𝑥) = ((𝑥𝐼𝑋)‘𝑖))
25 fveq2 6822 . . . . . . 7 (𝑦 = 𝑗 → ((𝑦𝐽𝑌)‘𝑦) = ((𝑦𝐽𝑌)‘𝑗))
2624, 25oveqan12d 7368 . . . . . 6 ((𝑥 = 𝑖𝑦 = 𝑗) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
2714, 15, 19, 23, 26cbvmpo 7443 . . . . 5 (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
28 vex 3440 . . . . . . . 8 𝑖 ∈ V
29 vex 3440 . . . . . . . 8 𝑗 ∈ V
3028, 29eqop2 7967 . . . . . . 7 (𝑧 = ⟨𝑖, 𝑗⟩ ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) = 𝑖 ∧ (2nd𝑧) = 𝑗)))
31 fveq2 6822 . . . . . . . 8 ((1st𝑧) = 𝑖 → ((𝑥𝐼𝑋)‘(1st𝑧)) = ((𝑥𝐼𝑋)‘𝑖))
32 fveq2 6822 . . . . . . . 8 ((2nd𝑧) = 𝑗 → ((𝑦𝐽𝑌)‘(2nd𝑧)) = ((𝑦𝐽𝑌)‘𝑗))
3331, 32oveqan12d 7368 . . . . . . 7 (((1st𝑧) = 𝑖 ∧ (2nd𝑧) = 𝑗) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
3430, 33simplbiim 504 . . . . . 6 (𝑧 = ⟨𝑖, 𝑗⟩ → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
3534mpompt 7463 . . . . 5 (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) = (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
3627, 35eqtr4i 2755 . . . 4 (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))))
3713, 36eqtr3di 2779 . . 3 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) = (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))))
3837oveq1d 7364 . 2 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) = ((𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) supp 0 ))
39 difxp 6113 . . . . . 6 ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) = (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))))
4039eleq2i 2820 . . . . 5 (𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) ↔ 𝑧 ∈ (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
41 elun 4104 . . . . 5 (𝑧 ∈ (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) ↔ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
4240, 41bitri 275 . . . 4 (𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) ↔ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
43 xp1st 7956 . . . . . . . 8 (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) → (1st𝑧) ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
442fmpttd 7049 . . . . . . . . 9 (𝜑 → (𝑥𝐼𝑋):𝐼𝐵)
45 ssidd 3959 . . . . . . . . 9 (𝜑 → ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 ))
46 evlslem4.i . . . . . . . . 9 (𝜑𝐼𝑉)
47 evlslem4.z . . . . . . . . . . 11 0 = (0g𝑅)
4847fvexi 6836 . . . . . . . . . 10 0 ∈ V
4948a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
5044, 45, 46, 49suppssr 8128 . . . . . . . 8 ((𝜑 ∧ (1st𝑧) ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 ))) → ((𝑥𝐼𝑋)‘(1st𝑧)) = 0 )
5143, 50sylan2 593 . . . . . . 7 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ((𝑥𝐼𝑋)‘(1st𝑧)) = 0 )
5251oveq1d 7364 . . . . . 6 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))))
53 evlslem4.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
548fmpttd 7049 . . . . . . . 8 (𝜑 → (𝑦𝐽𝑌):𝐽𝐵)
55 xp2nd 7957 . . . . . . . 8 (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) → (2nd𝑧) ∈ 𝐽)
56 ffvelcdm 7015 . . . . . . . 8 (((𝑦𝐽𝑌):𝐽𝐵 ∧ (2nd𝑧) ∈ 𝐽) → ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵)
5754, 55, 56syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵)
58 evlslem4.b . . . . . . . 8 𝐵 = (Base‘𝑅)
59 evlslem4.t . . . . . . . 8 · = (.r𝑅)
6058, 59, 47ringlz 20178 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵) → ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
6153, 57, 60syl2an2r 685 . . . . . 6 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
6252, 61eqtrd 2764 . . . . 5 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
63 xp2nd 7957 . . . . . . . 8 (𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → (2nd𝑧) ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
64 ssidd 3959 . . . . . . . . 9 (𝜑 → ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 ))
65 evlslem4.j . . . . . . . . 9 (𝜑𝐽𝑊)
6654, 64, 65, 49suppssr 8128 . . . . . . . 8 ((𝜑 ∧ (2nd𝑧) ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → ((𝑦𝐽𝑌)‘(2nd𝑧)) = 0 )
6763, 66sylan2 593 . . . . . . 7 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → ((𝑦𝐽𝑌)‘(2nd𝑧)) = 0 )
6867oveq2d 7365 . . . . . 6 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ))
69 xp1st 7956 . . . . . . . 8 (𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → (1st𝑧) ∈ 𝐼)
70 ffvelcdm 7015 . . . . . . . 8 (((𝑥𝐼𝑋):𝐼𝐵 ∧ (1st𝑧) ∈ 𝐼) → ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵)
7144, 69, 70syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵)
7258, 59, 47ringrz 20179 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵) → (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ) = 0 )
7353, 71, 72syl2an2r 685 . . . . . 6 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ) = 0 )
7468, 73eqtrd 2764 . . . . 5 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
7562, 74jaodan 959 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
7642, 75sylan2b 594 . . 3 ((𝜑𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
7746, 65xpexd 7687 . . 3 (𝜑 → (𝐼 × 𝐽) ∈ V)
7876, 77suppss2 8133 . 2 (𝜑 → ((𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
7938, 78eqsstrd 3970 1 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  cdif 3900  cun 3901  wss 3903  cop 4583  cmpt 5173   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923   supp csupp 8093  Basecbs 17120  .rcmulr 17162  0gc0g 17343  Ringcrg 20118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120
This theorem is referenced by:  evlslem2  21984
  Copyright terms: Public domain W3C validator