Detailed syntax breakdown of Definition df-ewlks
| Step | Hyp | Ref
| Expression |
| 1 | | cewlks 29613 |
. 2
class
EdgWalks |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | vs |
. . 3
setvar 𝑠 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | cxnn0 12599 |
. . 3
class
ℕ0* |
| 6 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 7 | 6 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 8 | | vi |
. . . . . . . . . 10
setvar 𝑖 |
| 9 | 8 | cv 1539 |
. . . . . . . . 9
class 𝑖 |
| 10 | 9 | cdm 5685 |
. . . . . . . 8
class dom 𝑖 |
| 11 | 10 | cword 14552 |
. . . . . . 7
class Word dom
𝑖 |
| 12 | 7, 11 | wcel 2108 |
. . . . . 6
wff 𝑓 ∈ Word dom 𝑖 |
| 13 | 3 | cv 1539 |
. . . . . . . 8
class 𝑠 |
| 14 | | vk |
. . . . . . . . . . . . . 14
setvar 𝑘 |
| 15 | 14 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑘 |
| 16 | | c1 11156 |
. . . . . . . . . . . . 13
class
1 |
| 17 | | cmin 11492 |
. . . . . . . . . . . . 13
class
− |
| 18 | 15, 16, 17 | co 7431 |
. . . . . . . . . . . 12
class (𝑘 − 1) |
| 19 | 18, 7 | cfv 6561 |
. . . . . . . . . . 11
class (𝑓‘(𝑘 − 1)) |
| 20 | 19, 9 | cfv 6561 |
. . . . . . . . . 10
class (𝑖‘(𝑓‘(𝑘 − 1))) |
| 21 | 15, 7 | cfv 6561 |
. . . . . . . . . . 11
class (𝑓‘𝑘) |
| 22 | 21, 9 | cfv 6561 |
. . . . . . . . . 10
class (𝑖‘(𝑓‘𝑘)) |
| 23 | 20, 22 | cin 3950 |
. . . . . . . . 9
class ((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘))) |
| 24 | | chash 14369 |
. . . . . . . . 9
class
♯ |
| 25 | 23, 24 | cfv 6561 |
. . . . . . . 8
class
(♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))) |
| 26 | | cle 11296 |
. . . . . . . 8
class
≤ |
| 27 | 13, 25, 26 | wbr 5143 |
. . . . . . 7
wff 𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))) |
| 28 | 7, 24 | cfv 6561 |
. . . . . . . 8
class
(♯‘𝑓) |
| 29 | | cfzo 13694 |
. . . . . . . 8
class
..^ |
| 30 | 16, 28, 29 | co 7431 |
. . . . . . 7
class
(1..^(♯‘𝑓)) |
| 31 | 27, 14, 30 | wral 3061 |
. . . . . 6
wff
∀𝑘 ∈
(1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))) |
| 32 | 12, 31 | wa 395 |
. . . . 5
wff (𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘))))) |
| 33 | 2 | cv 1539 |
. . . . . 6
class 𝑔 |
| 34 | | ciedg 29014 |
. . . . . 6
class
iEdg |
| 35 | 33, 34 | cfv 6561 |
. . . . 5
class
(iEdg‘𝑔) |
| 36 | 32, 8, 35 | wsbc 3788 |
. . . 4
wff
[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘))))) |
| 37 | 36, 6 | cab 2714 |
. . 3
class {𝑓 ∣
[(iEdg‘𝑔) /
𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))} |
| 38 | 2, 3, 4, 5, 37 | cmpo 7433 |
. 2
class (𝑔 ∈ V, 𝑠 ∈ ℕ0*
↦ {𝑓 ∣
[(iEdg‘𝑔) /
𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))}) |
| 39 | 1, 38 | wceq 1540 |
1
wff EdgWalks =
(𝑔 ∈ V, 𝑠 ∈
ℕ0* ↦ {𝑓 ∣ [(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))}) |