Detailed syntax breakdown of Definition df-ewlks
Step | Hyp | Ref
| Expression |
1 | | cewlks 27990 |
. 2
class
EdgWalks |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | vs |
. . 3
setvar 𝑠 |
4 | | cvv 3434 |
. . 3
class
V |
5 | | cxnn0 12333 |
. . 3
class
ℕ0* |
6 | | vf |
. . . . . . . 8
setvar 𝑓 |
7 | 6 | cv 1536 |
. . . . . . 7
class 𝑓 |
8 | | vi |
. . . . . . . . . 10
setvar 𝑖 |
9 | 8 | cv 1536 |
. . . . . . . . 9
class 𝑖 |
10 | 9 | cdm 5591 |
. . . . . . . 8
class dom 𝑖 |
11 | 10 | cword 14245 |
. . . . . . 7
class Word dom
𝑖 |
12 | 7, 11 | wcel 2101 |
. . . . . 6
wff 𝑓 ∈ Word dom 𝑖 |
13 | 3 | cv 1536 |
. . . . . . . 8
class 𝑠 |
14 | | vk |
. . . . . . . . . . . . . 14
setvar 𝑘 |
15 | 14 | cv 1536 |
. . . . . . . . . . . . 13
class 𝑘 |
16 | | c1 10900 |
. . . . . . . . . . . . 13
class
1 |
17 | | cmin 11233 |
. . . . . . . . . . . . 13
class
− |
18 | 15, 16, 17 | co 7295 |
. . . . . . . . . . . 12
class (𝑘 − 1) |
19 | 18, 7 | cfv 6447 |
. . . . . . . . . . 11
class (𝑓‘(𝑘 − 1)) |
20 | 19, 9 | cfv 6447 |
. . . . . . . . . 10
class (𝑖‘(𝑓‘(𝑘 − 1))) |
21 | 15, 7 | cfv 6447 |
. . . . . . . . . . 11
class (𝑓‘𝑘) |
22 | 21, 9 | cfv 6447 |
. . . . . . . . . 10
class (𝑖‘(𝑓‘𝑘)) |
23 | 20, 22 | cin 3888 |
. . . . . . . . 9
class ((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘))) |
24 | | chash 14072 |
. . . . . . . . 9
class
♯ |
25 | 23, 24 | cfv 6447 |
. . . . . . . 8
class
(♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))) |
26 | | cle 11038 |
. . . . . . . 8
class
≤ |
27 | 13, 25, 26 | wbr 5077 |
. . . . . . 7
wff 𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))) |
28 | 7, 24 | cfv 6447 |
. . . . . . . 8
class
(♯‘𝑓) |
29 | | cfzo 13410 |
. . . . . . . 8
class
..^ |
30 | 16, 28, 29 | co 7295 |
. . . . . . 7
class
(1..^(♯‘𝑓)) |
31 | 27, 14, 30 | wral 3059 |
. . . . . 6
wff
∀𝑘 ∈
(1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))) |
32 | 12, 31 | wa 395 |
. . . . 5
wff (𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘))))) |
33 | 2 | cv 1536 |
. . . . . 6
class 𝑔 |
34 | | ciedg 27395 |
. . . . . 6
class
iEdg |
35 | 33, 34 | cfv 6447 |
. . . . 5
class
(iEdg‘𝑔) |
36 | 32, 8, 35 | wsbc 3718 |
. . . 4
wff
[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘))))) |
37 | 36, 6 | cab 2710 |
. . 3
class {𝑓 ∣
[(iEdg‘𝑔) /
𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))} |
38 | 2, 3, 4, 5, 37 | cmpo 7297 |
. 2
class (𝑔 ∈ V, 𝑠 ∈ ℕ0*
↦ {𝑓 ∣
[(iEdg‘𝑔) /
𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))}) |
39 | 1, 38 | wceq 1537 |
1
wff EdgWalks =
(𝑔 ∈ V, 𝑠 ∈
ℕ0* ↦ {𝑓 ∣ [(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))}) |