Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ewlkprop | Structured version Visualization version GIF version |
Description: Properties of an s-walk of edges. (Contributed by AV, 4-Jan-2021.) |
Ref | Expression |
---|---|
ewlksfval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
ewlkprop | ⊢ (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ewlks 27501 | . . 3 ⊢ EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓 ∣ [(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))}) | |
2 | 1 | elmpocl 7389 | . 2 ⊢ (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*)) |
3 | simpr 488 | . . 3 ⊢ ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ (𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*)) → (𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*)) | |
4 | ewlksfval.i | . . . . . . . . 9 ⊢ 𝐼 = (iEdg‘𝐺) | |
5 | 4 | isewlk 27505 | . . . . . . . 8 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆)) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
6 | 5 | 3expa 1115 | . . . . . . 7 ⊢ (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆)) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
7 | 6 | biimpd 232 | . . . . . 6 ⊢ (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆)) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
8 | 7 | expcom 417 | . . . . 5 ⊢ (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))))) |
9 | 8 | pm2.43a 54 | . . . 4 ⊢ (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
10 | 9 | imp 410 | . . 3 ⊢ ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ (𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*)) → (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) |
11 | 3anass 1092 | . . 3 ⊢ (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) | |
12 | 3, 10, 11 | sylanbrc 586 | . 2 ⊢ ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ (𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*)) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) |
13 | 2, 12 | mpdan 686 | 1 ⊢ (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 {cab 2735 ∀wral 3070 Vcvv 3409 [wsbc 3698 ∩ cin 3859 class class class wbr 5036 dom cdm 5528 ‘cfv 6340 (class class class)co 7156 1c1 10589 ≤ cle 10727 − cmin 10921 ℕ0*cxnn0 12019 ..^cfzo 13095 ♯chash 13753 Word cword 13926 iEdgciedg 26903 EdgWalks cewlks 27498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-fzo 13096 df-hash 13754 df-word 13927 df-ewlks 27501 |
This theorem is referenced by: ewlkinedg 27507 ewlkle 27508 upgrewlkle2 27509 |
Copyright terms: Public domain | W3C validator |