MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ewlksfval Structured version   Visualization version   GIF version

Theorem ewlksfval 27490
Description: The set of s-walks of edges (in a hypergraph). (Contributed by AV, 4-Jan-2021.)
Hypothesis
Ref Expression
ewlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
ewlksfval ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))})
Distinct variable groups:   𝑓,𝐺,𝑘   𝑆,𝑓,𝑘   𝑓,𝑊,𝑘
Allowed substitution hints:   𝐼(𝑓,𝑘)

Proof of Theorem ewlksfval
Dummy variables 𝑔 𝑖 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ewlks 27487 . . . 4 EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))})
21a1i 11 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))}))
3 fvexd 6673 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑆) → (iEdg‘𝑔) ∈ V)
4 simpr 488 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑖 = (iEdg‘𝑔))
5 fveq2 6658 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
65adantr 484 . . . . . . . . . . . 12 ((𝑔 = 𝐺𝑠 = 𝑆) → (iEdg‘𝑔) = (iEdg‘𝐺))
76adantr 484 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (iEdg‘𝑔) = (iEdg‘𝐺))
84, 7eqtrd 2793 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑖 = (iEdg‘𝐺))
98dmeqd 5745 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → dom 𝑖 = dom (iEdg‘𝐺))
10 wrdeq 13935 . . . . . . . . 9 (dom 𝑖 = dom (iEdg‘𝐺) → Word dom 𝑖 = Word dom (iEdg‘𝐺))
119, 10syl 17 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → Word dom 𝑖 = Word dom (iEdg‘𝐺))
1211eleq2d 2837 . . . . . . 7 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑓 ∈ Word dom 𝑖𝑓 ∈ Word dom (iEdg‘𝐺)))
13 simpr 488 . . . . . . . . . 10 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑠 = 𝑆)
1413adantr 484 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑠 = 𝑆)
158fveq1d 6660 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑖‘(𝑓‘(𝑘 − 1))) = ((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))))
168fveq1d 6660 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑖‘(𝑓𝑘)) = ((iEdg‘𝐺)‘(𝑓𝑘)))
1715, 16ineq12d 4118 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → ((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘))) = (((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))
1817fveq2d 6662 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))) = (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))
1914, 18breq12d 5045 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))) ↔ 𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))))
2019ralbidv 3126 . . . . . . 7 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))) ↔ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))))
2112, 20anbi12d 633 . . . . . 6 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → ((𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘))))) ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))))
223, 21sbcied 3739 . . . . 5 ((𝑔 = 𝐺𝑠 = 𝑆) → ([(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘))))) ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))))
2322abbidv 2822 . . . 4 ((𝑔 = 𝐺𝑠 = 𝑆) → {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))})
2423adantl 485 . . 3 (((𝐺𝑊𝑆 ∈ ℕ0*) ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))})
25 elex 3428 . . . 4 (𝐺𝑊𝐺 ∈ V)
2625adantr 484 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → 𝐺 ∈ V)
27 simpr 488 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → 𝑆 ∈ ℕ0*)
28 df-rab 3079 . . . 4 {𝑓 ∈ Word dom (iEdg‘𝐺) ∣ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))}
29 fvex 6671 . . . . . . . 8 (iEdg‘𝐺) ∈ V
3029dmex 7621 . . . . . . 7 dom (iEdg‘𝐺) ∈ V
3130wrdexi 13925 . . . . . 6 Word dom (iEdg‘𝐺) ∈ V
3231rabex 5202 . . . . 5 {𝑓 ∈ Word dom (iEdg‘𝐺) ∣ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))} ∈ V
3332a1i 11 . . . 4 ((𝐺𝑊𝑆 ∈ ℕ0*) → {𝑓 ∈ Word dom (iEdg‘𝐺) ∣ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))} ∈ V)
3428, 33eqeltrrid 2857 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))} ∈ V)
352, 24, 26, 27, 34ovmpod 7297 . 2 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))})
36 ewlksfval.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
3736eqcomi 2767 . . . . . . . 8 (iEdg‘𝐺) = 𝐼
3837a1i 11 . . . . . . 7 ((𝐺𝑊𝑆 ∈ ℕ0*) → (iEdg‘𝐺) = 𝐼)
3938dmeqd 5745 . . . . . 6 ((𝐺𝑊𝑆 ∈ ℕ0*) → dom (iEdg‘𝐺) = dom 𝐼)
40 wrdeq 13935 . . . . . 6 (dom (iEdg‘𝐺) = dom 𝐼 → Word dom (iEdg‘𝐺) = Word dom 𝐼)
4139, 40syl 17 . . . . 5 ((𝐺𝑊𝑆 ∈ ℕ0*) → Word dom (iEdg‘𝐺) = Word dom 𝐼)
4241eleq2d 2837 . . . 4 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝑓 ∈ Word dom (iEdg‘𝐺) ↔ 𝑓 ∈ Word dom 𝐼))
4338fveq1d 6660 . . . . . . . 8 ((𝐺𝑊𝑆 ∈ ℕ0*) → ((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) = (𝐼‘(𝑓‘(𝑘 − 1))))
4438fveq1d 6660 . . . . . . . 8 ((𝐺𝑊𝑆 ∈ ℕ0*) → ((iEdg‘𝐺)‘(𝑓𝑘)) = (𝐼‘(𝑓𝑘)))
4543, 44ineq12d 4118 . . . . . . 7 ((𝐺𝑊𝑆 ∈ ℕ0*) → (((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))) = ((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘))))
4645fveq2d 6662 . . . . . 6 ((𝐺𝑊𝑆 ∈ ℕ0*) → (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))) = (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))
4746breq2d 5044 . . . . 5 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))) ↔ 𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘))))))
4847ralbidv 3126 . . . 4 ((𝐺𝑊𝑆 ∈ ℕ0*) → (∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))) ↔ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘))))))
4942, 48anbi12d 633 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → ((𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))) ↔ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))))
5049abbidv 2822 . 2 ((𝐺𝑊𝑆 ∈ ℕ0*) → {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))})
5135, 50eqtrd 2793 1 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {cab 2735  wral 3070  {crab 3074  Vcvv 3409  [wsbc 3696  cin 3857   class class class wbr 5032  dom cdm 5524  cfv 6335  (class class class)co 7150  cmpo 7152  1c1 10576  cle 10714  cmin 10908  0*cxnn0 12006  ..^cfzo 13082  chash 13740  Word cword 13913  iEdgciedg 26889   EdgWalks cewlks 27484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-ewlks 27487
This theorem is referenced by:  isewlk  27491
  Copyright terms: Public domain W3C validator