MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ewlksfval Structured version   Visualization version   GIF version

Theorem ewlksfval 29586
Description: The set of s-walks of edges (in a hypergraph). (Contributed by AV, 4-Jan-2021.)
Hypothesis
Ref Expression
ewlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
ewlksfval ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))})
Distinct variable groups:   𝑓,𝐺,𝑘   𝑆,𝑓,𝑘   𝑓,𝑊,𝑘
Allowed substitution hints:   𝐼(𝑓,𝑘)

Proof of Theorem ewlksfval
Dummy variables 𝑔 𝑖 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ewlks 29583 . . . 4 EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))})
21a1i 11 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))}))
3 fvexd 6896 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑆) → (iEdg‘𝑔) ∈ V)
4 simpr 484 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑖 = (iEdg‘𝑔))
5 fveq2 6881 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
65adantr 480 . . . . . . . . . . . 12 ((𝑔 = 𝐺𝑠 = 𝑆) → (iEdg‘𝑔) = (iEdg‘𝐺))
76adantr 480 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (iEdg‘𝑔) = (iEdg‘𝐺))
84, 7eqtrd 2771 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑖 = (iEdg‘𝐺))
98dmeqd 5890 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → dom 𝑖 = dom (iEdg‘𝐺))
10 wrdeq 14559 . . . . . . . . 9 (dom 𝑖 = dom (iEdg‘𝐺) → Word dom 𝑖 = Word dom (iEdg‘𝐺))
119, 10syl 17 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → Word dom 𝑖 = Word dom (iEdg‘𝐺))
1211eleq2d 2821 . . . . . . 7 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑓 ∈ Word dom 𝑖𝑓 ∈ Word dom (iEdg‘𝐺)))
13 simpr 484 . . . . . . . . . 10 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑠 = 𝑆)
1413adantr 480 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑠 = 𝑆)
158fveq1d 6883 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑖‘(𝑓‘(𝑘 − 1))) = ((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))))
168fveq1d 6883 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑖‘(𝑓𝑘)) = ((iEdg‘𝐺)‘(𝑓𝑘)))
1715, 16ineq12d 4201 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → ((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘))) = (((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))
1817fveq2d 6885 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))) = (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))
1914, 18breq12d 5137 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))) ↔ 𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))))
2019ralbidv 3164 . . . . . . 7 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))) ↔ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))))
2112, 20anbi12d 632 . . . . . 6 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → ((𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘))))) ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))))
223, 21sbcied 3814 . . . . 5 ((𝑔 = 𝐺𝑠 = 𝑆) → ([(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘))))) ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))))
2322abbidv 2802 . . . 4 ((𝑔 = 𝐺𝑠 = 𝑆) → {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))})
2423adantl 481 . . 3 (((𝐺𝑊𝑆 ∈ ℕ0*) ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))})
25 elex 3485 . . . 4 (𝐺𝑊𝐺 ∈ V)
2625adantr 480 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → 𝐺 ∈ V)
27 simpr 484 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → 𝑆 ∈ ℕ0*)
28 df-rab 3421 . . . 4 {𝑓 ∈ Word dom (iEdg‘𝐺) ∣ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))}
29 fvex 6894 . . . . . . . 8 (iEdg‘𝐺) ∈ V
3029dmex 7910 . . . . . . 7 dom (iEdg‘𝐺) ∈ V
3130wrdexi 14549 . . . . . 6 Word dom (iEdg‘𝐺) ∈ V
3231rabex 5314 . . . . 5 {𝑓 ∈ Word dom (iEdg‘𝐺) ∣ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))} ∈ V
3332a1i 11 . . . 4 ((𝐺𝑊𝑆 ∈ ℕ0*) → {𝑓 ∈ Word dom (iEdg‘𝐺) ∣ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))} ∈ V)
3428, 33eqeltrrid 2840 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))} ∈ V)
352, 24, 26, 27, 34ovmpod 7564 . 2 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))})
36 ewlksfval.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
3736eqcomi 2745 . . . . . . . 8 (iEdg‘𝐺) = 𝐼
3837a1i 11 . . . . . . 7 ((𝐺𝑊𝑆 ∈ ℕ0*) → (iEdg‘𝐺) = 𝐼)
3938dmeqd 5890 . . . . . 6 ((𝐺𝑊𝑆 ∈ ℕ0*) → dom (iEdg‘𝐺) = dom 𝐼)
40 wrdeq 14559 . . . . . 6 (dom (iEdg‘𝐺) = dom 𝐼 → Word dom (iEdg‘𝐺) = Word dom 𝐼)
4139, 40syl 17 . . . . 5 ((𝐺𝑊𝑆 ∈ ℕ0*) → Word dom (iEdg‘𝐺) = Word dom 𝐼)
4241eleq2d 2821 . . . 4 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝑓 ∈ Word dom (iEdg‘𝐺) ↔ 𝑓 ∈ Word dom 𝐼))
4338fveq1d 6883 . . . . . . . 8 ((𝐺𝑊𝑆 ∈ ℕ0*) → ((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) = (𝐼‘(𝑓‘(𝑘 − 1))))
4438fveq1d 6883 . . . . . . . 8 ((𝐺𝑊𝑆 ∈ ℕ0*) → ((iEdg‘𝐺)‘(𝑓𝑘)) = (𝐼‘(𝑓𝑘)))
4543, 44ineq12d 4201 . . . . . . 7 ((𝐺𝑊𝑆 ∈ ℕ0*) → (((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))) = ((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘))))
4645fveq2d 6885 . . . . . 6 ((𝐺𝑊𝑆 ∈ ℕ0*) → (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))) = (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))
4746breq2d 5136 . . . . 5 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))) ↔ 𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘))))))
4847ralbidv 3164 . . . 4 ((𝐺𝑊𝑆 ∈ ℕ0*) → (∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))) ↔ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘))))))
4942, 48anbi12d 632 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → ((𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))) ↔ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))))
5049abbidv 2802 . 2 ((𝐺𝑊𝑆 ∈ ℕ0*) → {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))})
5135, 50eqtrd 2771 1 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  {crab 3420  Vcvv 3464  [wsbc 3770  cin 3930   class class class wbr 5124  dom cdm 5659  cfv 6536  (class class class)co 7410  cmpo 7412  1c1 11135  cle 11275  cmin 11471  0*cxnn0 12579  ..^cfzo 13676  chash 14353  Word cword 14536  iEdgciedg 28981   EdgWalks cewlks 29580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-ewlks 29583
This theorem is referenced by:  isewlk  29587
  Copyright terms: Public domain W3C validator