Step | Hyp | Ref
| Expression |
1 | | df-ewlks 27868 |
. . . 4
⊢ EdgWalks
= (𝑔 ∈ V, 𝑠 ∈
ℕ0* ↦ {𝑓 ∣ [(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))}) |
2 | 1 | a1i 11 |
. . 3
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ EdgWalks = (𝑔 ∈
V, 𝑠 ∈
ℕ0* ↦ {𝑓 ∣ [(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))})) |
3 | | fvexd 6771 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (iEdg‘𝑔) ∈ V) |
4 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑖 = (iEdg‘𝑔)) |
5 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) |
6 | 5 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (iEdg‘𝑔) = (iEdg‘𝐺)) |
7 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (iEdg‘𝑔) = (iEdg‘𝐺)) |
8 | 4, 7 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑖 = (iEdg‘𝐺)) |
9 | 8 | dmeqd 5803 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → dom 𝑖 = dom (iEdg‘𝐺)) |
10 | | wrdeq 14167 |
. . . . . . . . 9
⊢ (dom
𝑖 = dom (iEdg‘𝐺) → Word dom 𝑖 = Word dom (iEdg‘𝐺)) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → Word dom 𝑖 = Word dom (iEdg‘𝐺)) |
12 | 11 | eleq2d 2824 |
. . . . . . 7
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑓 ∈ Word dom 𝑖 ↔ 𝑓 ∈ Word dom (iEdg‘𝐺))) |
13 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑠 = 𝑆) |
15 | 8 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑖‘(𝑓‘(𝑘 − 1))) = ((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1)))) |
16 | 8 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑖‘(𝑓‘𝑘)) = ((iEdg‘𝐺)‘(𝑓‘𝑘))) |
17 | 15, 16 | ineq12d 4144 |
. . . . . . . . . 10
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → ((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘))) = (((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))) |
18 | 17 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))) = (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘))))) |
19 | 14, 18 | breq12d 5083 |
. . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))) ↔ 𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))))) |
20 | 19 | ralbidv 3120 |
. . . . . . 7
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))) ↔ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))))) |
21 | 12, 20 | anbi12d 630 |
. . . . . 6
⊢ (((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → ((𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘))))) ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘))))))) |
22 | 3, 21 | sbcied 3756 |
. . . . 5
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → ([(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘))))) ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘))))))) |
23 | 22 | abbidv 2808 |
. . . 4
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → {𝑓 ∣ [(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))))}) |
24 | 23 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
∧ (𝑔 = 𝐺 ∧ 𝑠 = 𝑆)) → {𝑓 ∣ [(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))))}) |
25 | | elex 3440 |
. . . 4
⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) |
26 | 25 | adantr 480 |
. . 3
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ 𝐺 ∈
V) |
27 | | simpr 484 |
. . 3
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ 𝑆 ∈
ℕ0*) |
28 | | df-rab 3072 |
. . . 4
⊢ {𝑓 ∈ Word dom
(iEdg‘𝐺) ∣
∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))))} |
29 | | fvex 6769 |
. . . . . . . 8
⊢
(iEdg‘𝐺)
∈ V |
30 | 29 | dmex 7732 |
. . . . . . 7
⊢ dom
(iEdg‘𝐺) ∈
V |
31 | 30 | wrdexi 14157 |
. . . . . 6
⊢ Word dom
(iEdg‘𝐺) ∈
V |
32 | 31 | rabex 5251 |
. . . . 5
⊢ {𝑓 ∈ Word dom
(iEdg‘𝐺) ∣
∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘))))} ∈ V |
33 | 32 | a1i 11 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ {𝑓 ∈ Word dom
(iEdg‘𝐺) ∣
∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘))))} ∈ V) |
34 | 28, 33 | eqeltrrid 2844 |
. . 3
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ {𝑓 ∣ (𝑓 ∈ Word dom
(iEdg‘𝐺) ∧
∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))))} ∈ V) |
35 | 2, 24, 26, 27, 34 | ovmpod 7403 |
. 2
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))))}) |
36 | | ewlksfval.i |
. . . . . . . . 9
⊢ 𝐼 = (iEdg‘𝐺) |
37 | 36 | eqcomi 2747 |
. . . . . . . 8
⊢
(iEdg‘𝐺) =
𝐼 |
38 | 37 | a1i 11 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ (iEdg‘𝐺) =
𝐼) |
39 | 38 | dmeqd 5803 |
. . . . . 6
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ dom (iEdg‘𝐺) =
dom 𝐼) |
40 | | wrdeq 14167 |
. . . . . 6
⊢ (dom
(iEdg‘𝐺) = dom 𝐼 → Word dom
(iEdg‘𝐺) = Word dom
𝐼) |
41 | 39, 40 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ Word dom (iEdg‘𝐺) = Word dom 𝐼) |
42 | 41 | eleq2d 2824 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ (𝑓 ∈ Word dom
(iEdg‘𝐺) ↔ 𝑓 ∈ Word dom 𝐼)) |
43 | 38 | fveq1d 6758 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ ((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) = (𝐼‘(𝑓‘(𝑘 − 1)))) |
44 | 38 | fveq1d 6758 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ ((iEdg‘𝐺)‘(𝑓‘𝑘)) = (𝐼‘(𝑓‘𝑘))) |
45 | 43, 44 | ineq12d 4144 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ (((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘))) = ((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))) |
46 | 45 | fveq2d 6760 |
. . . . . 6
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))) = (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘))))) |
47 | 46 | breq2d 5082 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ (𝑆 ≤
(♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))) ↔ 𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))) |
48 | 47 | ralbidv 3120 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ (∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))) ↔ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))) |
49 | 42, 48 | anbi12d 630 |
. . 3
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ ((𝑓 ∈ Word dom
(iEdg‘𝐺) ∧
∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘))))) ↔ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘))))))) |
50 | 49 | abbidv 2808 |
. 2
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ {𝑓 ∣ (𝑓 ∈ Word dom
(iEdg‘𝐺) ∧
∀𝑘 ∈
(1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓‘𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))}) |
51 | 35, 50 | eqtrd 2778 |
1
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*)
→ (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))}) |