Detailed syntax breakdown of Definition df-wlks
Step | Hyp | Ref
| Expression |
1 | | cwlks 27972 |
. 2
class
Walks |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vf |
. . . . . . 7
setvar 𝑓 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑓 |
6 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑔 |
7 | | ciedg 27376 |
. . . . . . . . 9
class
iEdg |
8 | 6, 7 | cfv 6437 |
. . . . . . . 8
class
(iEdg‘𝑔) |
9 | 8 | cdm 5590 |
. . . . . . 7
class dom
(iEdg‘𝑔) |
10 | 9 | cword 14226 |
. . . . . 6
class Word dom
(iEdg‘𝑔) |
11 | 5, 10 | wcel 2107 |
. . . . 5
wff 𝑓 ∈ Word dom
(iEdg‘𝑔) |
12 | | cc0 10880 |
. . . . . . 7
class
0 |
13 | | chash 14053 |
. . . . . . . 8
class
♯ |
14 | 5, 13 | cfv 6437 |
. . . . . . 7
class
(♯‘𝑓) |
15 | | cfz 13248 |
. . . . . . 7
class
... |
16 | 12, 14, 15 | co 7284 |
. . . . . 6
class
(0...(♯‘𝑓)) |
17 | | cvtx 27375 |
. . . . . . 7
class
Vtx |
18 | 6, 17 | cfv 6437 |
. . . . . 6
class
(Vtx‘𝑔) |
19 | | vp |
. . . . . . 7
setvar 𝑝 |
20 | 19 | cv 1538 |
. . . . . 6
class 𝑝 |
21 | 16, 18, 20 | wf 6433 |
. . . . 5
wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) |
22 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
23 | 22 | cv 1538 |
. . . . . . . . 9
class 𝑘 |
24 | 23, 20 | cfv 6437 |
. . . . . . . 8
class (𝑝‘𝑘) |
25 | | c1 10881 |
. . . . . . . . . 10
class
1 |
26 | | caddc 10883 |
. . . . . . . . . 10
class
+ |
27 | 23, 25, 26 | co 7284 |
. . . . . . . . 9
class (𝑘 + 1) |
28 | 27, 20 | cfv 6437 |
. . . . . . . 8
class (𝑝‘(𝑘 + 1)) |
29 | 24, 28 | wceq 1539 |
. . . . . . 7
wff (𝑝‘𝑘) = (𝑝‘(𝑘 + 1)) |
30 | 23, 5 | cfv 6437 |
. . . . . . . . 9
class (𝑓‘𝑘) |
31 | 30, 8 | cfv 6437 |
. . . . . . . 8
class
((iEdg‘𝑔)‘(𝑓‘𝑘)) |
32 | 24 | csn 4562 |
. . . . . . . 8
class {(𝑝‘𝑘)} |
33 | 31, 32 | wceq 1539 |
. . . . . . 7
wff
((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)} |
34 | 24, 28 | cpr 4564 |
. . . . . . . 8
class {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
35 | 34, 31 | wss 3888 |
. . . . . . 7
wff {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘)) |
36 | 29, 33, 35 | wif 1060 |
. . . . . 6
wff if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))) |
37 | | cfzo 13391 |
. . . . . . 7
class
..^ |
38 | 12, 14, 37 | co 7284 |
. . . . . 6
class
(0..^(♯‘𝑓)) |
39 | 36, 22, 38 | wral 3065 |
. . . . 5
wff
∀𝑘 ∈
(0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))) |
40 | 11, 21, 39 | w3a 1086 |
. . . 4
wff (𝑓 ∈ Word dom
(iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈
(0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘)))) |
41 | 40, 4, 19 | copab 5137 |
. . 3
class
{〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom
(iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈
(0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))} |
42 | 2, 3, 41 | cmpt 5158 |
. 2
class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) |
43 | 1, 42 | wceq 1539 |
1
wff Walks =
(𝑔 ∈ V ↦
{〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom
(iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈
(0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) |