MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-wlks Structured version   Visualization version   GIF version

Definition df-wlks 28853
Description: Define the set of all walks (in a hypergraph). Such walks correspond to the s-walks "on the vertex level" (with s = 1), and also to 1-walks "on the edge level" (see wlk1walk 28893) discussed in Aksoy et al. The predicate 𝐹(Walksβ€˜πΊ)𝑃 can be read as "The pair ⟨𝐹, π‘ƒβŸ© represents a walk in a graph 𝐺", see also iswlk 28864.

The condition {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) (hereinafter referred to as C) would not be sufficient, because the repetition of a vertex in a walk (i.e. (π‘β€˜π‘˜) = (π‘β€˜(π‘˜ + 1)) should be allowed only if there is a loop at (π‘β€˜π‘˜). Otherwise, C would be fulfilled by each edge containing (π‘β€˜π‘˜).

According to the definition of [Bollobas] p. 4.: "A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) ...", a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by AV, 30-Dec-2020.)

Assertion
Ref Expression
df-wlks Walks = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom (iEdgβ€˜π‘”) ∧ 𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))if-((π‘β€˜π‘˜) = (π‘β€˜(π‘˜ + 1)), ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜)}, {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜))))})
Distinct variable group:   𝑓,𝑔,π‘˜,𝑝

Detailed syntax breakdown of Definition df-wlks
StepHypRef Expression
1 cwlks 28850 . 2 class Walks
2 vg . . 3 setvar 𝑔
3 cvv 3474 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1540 . . . . . 6 class 𝑓
62cv 1540 . . . . . . . . 9 class 𝑔
7 ciedg 28254 . . . . . . . . 9 class iEdg
86, 7cfv 6543 . . . . . . . 8 class (iEdgβ€˜π‘”)
98cdm 5676 . . . . . . 7 class dom (iEdgβ€˜π‘”)
109cword 14463 . . . . . 6 class Word dom (iEdgβ€˜π‘”)
115, 10wcel 2106 . . . . 5 wff 𝑓 ∈ Word dom (iEdgβ€˜π‘”)
12 cc0 11109 . . . . . . 7 class 0
13 chash 14289 . . . . . . . 8 class β™―
145, 13cfv 6543 . . . . . . 7 class (β™―β€˜π‘“)
15 cfz 13483 . . . . . . 7 class ...
1612, 14, 15co 7408 . . . . . 6 class (0...(β™―β€˜π‘“))
17 cvtx 28253 . . . . . . 7 class Vtx
186, 17cfv 6543 . . . . . 6 class (Vtxβ€˜π‘”)
19 vp . . . . . . 7 setvar 𝑝
2019cv 1540 . . . . . 6 class 𝑝
2116, 18, 20wf 6539 . . . . 5 wff 𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”)
22 vk . . . . . . . . . 10 setvar π‘˜
2322cv 1540 . . . . . . . . 9 class π‘˜
2423, 20cfv 6543 . . . . . . . 8 class (π‘β€˜π‘˜)
25 c1 11110 . . . . . . . . . 10 class 1
26 caddc 11112 . . . . . . . . . 10 class +
2723, 25, 26co 7408 . . . . . . . . 9 class (π‘˜ + 1)
2827, 20cfv 6543 . . . . . . . 8 class (π‘β€˜(π‘˜ + 1))
2924, 28wceq 1541 . . . . . . 7 wff (π‘β€˜π‘˜) = (π‘β€˜(π‘˜ + 1))
3023, 5cfv 6543 . . . . . . . . 9 class (π‘“β€˜π‘˜)
3130, 8cfv 6543 . . . . . . . 8 class ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜))
3224csn 4628 . . . . . . . 8 class {(π‘β€˜π‘˜)}
3331, 32wceq 1541 . . . . . . 7 wff ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜)}
3424, 28cpr 4630 . . . . . . . 8 class {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))}
3534, 31wss 3948 . . . . . . 7 wff {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜))
3629, 33, 35wif 1061 . . . . . 6 wff if-((π‘β€˜π‘˜) = (π‘β€˜(π‘˜ + 1)), ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜)}, {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)))
37 cfzo 13626 . . . . . . 7 class ..^
3812, 14, 37co 7408 . . . . . 6 class (0..^(β™―β€˜π‘“))
3936, 22, 38wral 3061 . . . . 5 wff βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))if-((π‘β€˜π‘˜) = (π‘β€˜(π‘˜ + 1)), ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜)}, {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)))
4011, 21, 39w3a 1087 . . . 4 wff (𝑓 ∈ Word dom (iEdgβ€˜π‘”) ∧ 𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))if-((π‘β€˜π‘˜) = (π‘β€˜(π‘˜ + 1)), ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜)}, {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜))))
4140, 4, 19copab 5210 . . 3 class {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom (iEdgβ€˜π‘”) ∧ 𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))if-((π‘β€˜π‘˜) = (π‘β€˜(π‘˜ + 1)), ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜)}, {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜))))}
422, 3, 41cmpt 5231 . 2 class (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom (iEdgβ€˜π‘”) ∧ 𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))if-((π‘β€˜π‘˜) = (π‘β€˜(π‘˜ + 1)), ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜)}, {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜))))})
431, 42wceq 1541 1 wff Walks = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom (iEdgβ€˜π‘”) ∧ 𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))if-((π‘β€˜π‘˜) = (π‘β€˜(π‘˜ + 1)), ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜)}, {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜))))})
Colors of variables: wff setvar class
This definition is referenced by:  wksfval  28863  relwlk  28880
  Copyright terms: Public domain W3C validator