Detailed syntax breakdown of Definition df-wlks
| Step | Hyp | Ref
| Expression |
| 1 | | cwlks 29614 |
. 2
class
Walks |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vf |
. . . . . . 7
setvar 𝑓 |
| 5 | 4 | cv 1539 |
. . . . . 6
class 𝑓 |
| 6 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑔 |
| 7 | | ciedg 29014 |
. . . . . . . . 9
class
iEdg |
| 8 | 6, 7 | cfv 6561 |
. . . . . . . 8
class
(iEdg‘𝑔) |
| 9 | 8 | cdm 5685 |
. . . . . . 7
class dom
(iEdg‘𝑔) |
| 10 | 9 | cword 14552 |
. . . . . 6
class Word dom
(iEdg‘𝑔) |
| 11 | 5, 10 | wcel 2108 |
. . . . 5
wff 𝑓 ∈ Word dom
(iEdg‘𝑔) |
| 12 | | cc0 11155 |
. . . . . . 7
class
0 |
| 13 | | chash 14369 |
. . . . . . . 8
class
♯ |
| 14 | 5, 13 | cfv 6561 |
. . . . . . 7
class
(♯‘𝑓) |
| 15 | | cfz 13547 |
. . . . . . 7
class
... |
| 16 | 12, 14, 15 | co 7431 |
. . . . . 6
class
(0...(♯‘𝑓)) |
| 17 | | cvtx 29013 |
. . . . . . 7
class
Vtx |
| 18 | 6, 17 | cfv 6561 |
. . . . . 6
class
(Vtx‘𝑔) |
| 19 | | vp |
. . . . . . 7
setvar 𝑝 |
| 20 | 19 | cv 1539 |
. . . . . 6
class 𝑝 |
| 21 | 16, 18, 20 | wf 6557 |
. . . . 5
wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) |
| 22 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
| 23 | 22 | cv 1539 |
. . . . . . . . 9
class 𝑘 |
| 24 | 23, 20 | cfv 6561 |
. . . . . . . 8
class (𝑝‘𝑘) |
| 25 | | c1 11156 |
. . . . . . . . . 10
class
1 |
| 26 | | caddc 11158 |
. . . . . . . . . 10
class
+ |
| 27 | 23, 25, 26 | co 7431 |
. . . . . . . . 9
class (𝑘 + 1) |
| 28 | 27, 20 | cfv 6561 |
. . . . . . . 8
class (𝑝‘(𝑘 + 1)) |
| 29 | 24, 28 | wceq 1540 |
. . . . . . 7
wff (𝑝‘𝑘) = (𝑝‘(𝑘 + 1)) |
| 30 | 23, 5 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘𝑘) |
| 31 | 30, 8 | cfv 6561 |
. . . . . . . 8
class
((iEdg‘𝑔)‘(𝑓‘𝑘)) |
| 32 | 24 | csn 4626 |
. . . . . . . 8
class {(𝑝‘𝑘)} |
| 33 | 31, 32 | wceq 1540 |
. . . . . . 7
wff
((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)} |
| 34 | 24, 28 | cpr 4628 |
. . . . . . . 8
class {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 35 | 34, 31 | wss 3951 |
. . . . . . 7
wff {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘)) |
| 36 | 29, 33, 35 | wif 1063 |
. . . . . 6
wff if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))) |
| 37 | | cfzo 13694 |
. . . . . . 7
class
..^ |
| 38 | 12, 14, 37 | co 7431 |
. . . . . 6
class
(0..^(♯‘𝑓)) |
| 39 | 36, 22, 38 | wral 3061 |
. . . . 5
wff
∀𝑘 ∈
(0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))) |
| 40 | 11, 21, 39 | w3a 1087 |
. . . 4
wff (𝑓 ∈ Word dom
(iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈
(0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘)))) |
| 41 | 40, 4, 19 | copab 5205 |
. . 3
class
{〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom
(iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈
(0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))} |
| 42 | 2, 3, 41 | cmpt 5225 |
. 2
class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) |
| 43 | 1, 42 | wceq 1540 |
1
wff Walks =
(𝑔 ∈ V ↦
{〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom
(iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈
(0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) |