Step | Hyp | Ref
| Expression |
1 | | cwlks 28850 |
. 2
class
Walks |
2 | | vg |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vf |
. . . . . . 7
setvar π |
5 | 4 | cv 1540 |
. . . . . 6
class π |
6 | 2 | cv 1540 |
. . . . . . . . 9
class π |
7 | | ciedg 28254 |
. . . . . . . . 9
class
iEdg |
8 | 6, 7 | cfv 6543 |
. . . . . . . 8
class
(iEdgβπ) |
9 | 8 | cdm 5676 |
. . . . . . 7
class dom
(iEdgβπ) |
10 | 9 | cword 14463 |
. . . . . 6
class Word dom
(iEdgβπ) |
11 | 5, 10 | wcel 2106 |
. . . . 5
wff π β Word dom
(iEdgβπ) |
12 | | cc0 11109 |
. . . . . . 7
class
0 |
13 | | chash 14289 |
. . . . . . . 8
class
β― |
14 | 5, 13 | cfv 6543 |
. . . . . . 7
class
(β―βπ) |
15 | | cfz 13483 |
. . . . . . 7
class
... |
16 | 12, 14, 15 | co 7408 |
. . . . . 6
class
(0...(β―βπ)) |
17 | | cvtx 28253 |
. . . . . . 7
class
Vtx |
18 | 6, 17 | cfv 6543 |
. . . . . 6
class
(Vtxβπ) |
19 | | vp |
. . . . . . 7
setvar π |
20 | 19 | cv 1540 |
. . . . . 6
class π |
21 | 16, 18, 20 | wf 6539 |
. . . . 5
wff π:(0...(β―βπ))βΆ(Vtxβπ) |
22 | | vk |
. . . . . . . . . 10
setvar π |
23 | 22 | cv 1540 |
. . . . . . . . 9
class π |
24 | 23, 20 | cfv 6543 |
. . . . . . . 8
class (πβπ) |
25 | | c1 11110 |
. . . . . . . . . 10
class
1 |
26 | | caddc 11112 |
. . . . . . . . . 10
class
+ |
27 | 23, 25, 26 | co 7408 |
. . . . . . . . 9
class (π + 1) |
28 | 27, 20 | cfv 6543 |
. . . . . . . 8
class (πβ(π + 1)) |
29 | 24, 28 | wceq 1541 |
. . . . . . 7
wff (πβπ) = (πβ(π + 1)) |
30 | 23, 5 | cfv 6543 |
. . . . . . . . 9
class (πβπ) |
31 | 30, 8 | cfv 6543 |
. . . . . . . 8
class
((iEdgβπ)β(πβπ)) |
32 | 24 | csn 4628 |
. . . . . . . 8
class {(πβπ)} |
33 | 31, 32 | wceq 1541 |
. . . . . . 7
wff
((iEdgβπ)β(πβπ)) = {(πβπ)} |
34 | 24, 28 | cpr 4630 |
. . . . . . . 8
class {(πβπ), (πβ(π + 1))} |
35 | 34, 31 | wss 3948 |
. . . . . . 7
wff {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ)) |
36 | 29, 33, 35 | wif 1061 |
. . . . . 6
wff if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ))) |
37 | | cfzo 13626 |
. . . . . . 7
class
..^ |
38 | 12, 14, 37 | co 7408 |
. . . . . 6
class
(0..^(β―βπ)) |
39 | 36, 22, 38 | wral 3061 |
. . . . 5
wff
βπ β
(0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ))) |
40 | 11, 21, 39 | w3a 1087 |
. . . 4
wff (π β Word dom
(iEdgβπ) β§ π:(0...(β―βπ))βΆ(Vtxβπ) β§ βπ β
(0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ)))) |
41 | 40, 4, 19 | copab 5210 |
. . 3
class
{β¨π, πβ© β£ (π β Word dom
(iEdgβπ) β§ π:(0...(β―βπ))βΆ(Vtxβπ) β§ βπ β
(0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ))))} |
42 | 2, 3, 41 | cmpt 5231 |
. 2
class (π β V β¦ {β¨π, πβ© β£ (π β Word dom (iEdgβπ) β§ π:(0...(β―βπ))βΆ(Vtxβπ) β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ))))}) |
43 | 1, 42 | wceq 1541 |
1
wff Walks =
(π β V β¦
{β¨π, πβ© β£ (π β Word dom
(iEdgβπ) β§ π:(0...(β―βπ))βΆ(Vtxβπ) β§ βπ β
(0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ))))}) |