Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fin | Structured version Visualization version GIF version |
Description: Define the (proper) class of all finite sets. Similar to Definition 10.29 of [TakeutiZaring] p. 91, whose "Fin(a)" corresponds to our "𝑎 ∈ Fin". This definition is meaningful whether or not we accept the Axiom of Infinity ax-inf2 9304. If we accept Infinity, we can also express 𝐴 ∈ Fin by 𝐴 ≺ ω (Theorem isfinite 9315.) (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
df-fin | ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfn 8668 | . 2 class Fin | |
2 | vx | . . . . . 6 setvar 𝑥 | |
3 | 2 | cv 1542 | . . . . 5 class 𝑥 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1542 | . . . . 5 class 𝑦 |
6 | cen 8665 | . . . . 5 class ≈ | |
7 | 3, 5, 6 | wbr 5070 | . . . 4 wff 𝑥 ≈ 𝑦 |
8 | com 7684 | . . . 4 class ω | |
9 | 7, 4, 8 | wrex 3065 | . . 3 wff ∃𝑦 ∈ ω 𝑥 ≈ 𝑦 |
10 | 9, 2 | cab 2716 | . 2 class {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
11 | 1, 10 | wceq 1543 | 1 wff Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
Colors of variables: wff setvar class |
This definition is referenced by: isfi 8696 dffin1-5 10050 |
Copyright terms: Public domain | W3C validator |