| Metamath
Proof Explorer Theorem List (p. 90 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | enrefg 8901 | Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | ||
| Theorem | enref 8902 | Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ≈ 𝐴 | ||
| Theorem | eqeng 8903 | Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) | ||
| Theorem | domrefg 8904 | Dominance is reflexive. (Contributed by NM, 18-Jun-1998.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ 𝐴) | ||
| Theorem | en2d 8905* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑋)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝑌)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) | ||
| Theorem | en3d 8906* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) | ||
| Theorem | en2i 8907* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) & ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) ⇒ ⊢ 𝐴 ≈ 𝐵 | ||
| Theorem | en3i 8908* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ 𝐴 ≈ 𝐵 | ||
| Theorem | dom2lem 8909* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) | ||
| Theorem | dom2d 8910* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵)) | ||
| Theorem | dom3d 8911* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐴 ≼ 𝐵) | ||
| Theorem | dom2 8912* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐴 ≼ 𝐵) | ||
| Theorem | dom3 8913* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ 𝐵) | ||
| Theorem | idssen 8914 | Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ I ⊆ ≈ | ||
| Theorem | domssl 8915 | If 𝐴 is a subset of 𝐵 and 𝐶 dominates 𝐵, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | domssr 8916 | If 𝐶 is a superset of 𝐵 and 𝐵 dominates 𝐴, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) | ||
| Theorem | ssdomg 8917 | A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | ||
| Theorem | ener 8918 | Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.) |
| ⊢ ≈ Er V | ||
| Theorem | ensymb 8919 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | ||
| Theorem | ensym 8920 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | ||
| Theorem | ensymi 8921 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 ⇒ ⊢ 𝐵 ≈ 𝐴 | ||
| Theorem | ensymd 8922 | Symmetry of equinumerosity. Deduction form of ensym 8920. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≈ 𝐴) | ||
| Theorem | entr 8923 | Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
| Theorem | domtr 8924 | Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | entri 8925 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐴 ≈ 𝐶 | ||
| Theorem | entr2i 8926 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐶 ≈ 𝐴 | ||
| Theorem | entr3i 8927 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐴 ≈ 𝐶 ⇒ ⊢ 𝐵 ≈ 𝐶 | ||
| Theorem | entr4i 8928 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐶 ≈ 𝐵 ⇒ ⊢ 𝐴 ≈ 𝐶 | ||
| Theorem | endomtr 8929 | Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | domentr 8930 | Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | f1imaeng 8931 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
| Theorem | f1imaen2g 8932 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng 8931 does not need ax-rep 5215.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
| Theorem | f1imaen3g 8933 | If a set function is one-to-one, then a subset of its domain is equinumerous to the image of that subset. (This version of f1imaeng 8931 does not need ax-rep 5215 nor ax-pow 5301.) (Contributed by BTernaryTau, 13-Jan-2025.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ 𝑉) → 𝐶 ≈ (𝐹 “ 𝐶)) | ||
| Theorem | f1imaen 8934 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
| Theorem | en0 8935 | The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5301, ax-un 7663. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | ||
| Theorem | en0ALT 8936 | Shorter proof of en0 8935, depending on ax-pow 5301 and ax-un 7663. (Contributed by NM, 27-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | ||
| Theorem | en0r 8937 | The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.) |
| ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) | ||
| Theorem | ensn1 8938 | A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7663. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ≈ 1o | ||
| Theorem | ensn1g 8939 | A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | ||
| Theorem | enpr1g 8940 | {𝐴, 𝐴} has only one element. (Contributed by FL, 15-Feb-2010.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ≈ 1o) | ||
| Theorem | en1 8941* | A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) Avoid ax-un 7663. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | ||
| Theorem | en1b 8942 | A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7663. (Revised by BTernaryTau, 24-Sep-2024.) |
| ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) | ||
| Theorem | reuen1 8943* | Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} ≈ 1o) | ||
| Theorem | euen1 8944 | Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) | ||
| Theorem | euen1b 8945* | Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | en1uniel 8946 | A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) Avoid ax-un 7663. (Revised by BTernaryTau, 24-Sep-2024.) |
| ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) | ||
| Theorem | 2dom 8947* | A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
| ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) | ||
| Theorem | fundmen 8948 | A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (Fun 𝐹 → dom 𝐹 ≈ 𝐹) | ||
| Theorem | fundmeng 8949 | A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) | ||
| Theorem | cnven 8950 | A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) | ||
| Theorem | cnvct 8951 | If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) | ||
| Theorem | fndmeng 8952 | A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐴 ≈ 𝐹) | ||
| Theorem | mapsnend 8953 | Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.) (Revised by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 ↑m {𝐵}) ≈ 𝐴) | ||
| Theorem | mapsnen 8954 | Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 17-Jul-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ↑m {𝐵}) ≈ 𝐴 | ||
| Theorem | snmapen 8955 | Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003.) (Revised by AV, 17-Jul-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴}) | ||
| Theorem | snmapen1 8956 | Set exponentiation: a singleton to any set is equinumerous to ordinal 1. (Proposed by BJ, 17-Jul-2022.) (Contributed by AV, 17-Jul-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ≈ 1o) | ||
| Theorem | map1 8957 | Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (1o ↑m 𝐴) ≈ 1o) | ||
| Theorem | en2sn 8958 | Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5301. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7663. (Revised by BTernaryTau, 25-Sep-2024.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) | ||
| Theorem | 0fi 8959 | The empty set is finite. (Contributed by FL, 14-Jul-2008.) Avoid ax-10 2143, ax-un 7663. (Revised by BTernaryTau, 13-Jan-2025.) |
| ⊢ ∅ ∈ Fin | ||
| Theorem | snfi 8960 | A singleton is finite. (Contributed by NM, 4-Nov-2002.) (Proof shortened by BTernaryTau, 13-Jan-2025.) |
| ⊢ {𝐴} ∈ Fin | ||
| Theorem | fiprc 8961 | The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.) |
| ⊢ Fin ∉ V | ||
| Theorem | unen 8962 | Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) | ||
| Theorem | enrefnn 8963 | Equinumerosity is reflexive for finite ordinals, proved without using the Axiom of Power Sets (unlike enrefg 8901). (Contributed by BTernaryTau, 31-Jul-2024.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | ||
| Theorem | en2prd 8964 | Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ≠ 𝐷) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) | ||
| Theorem | enpr2d 8965 | A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-un 7663. (Revised by BTernaryTau, 23-Dec-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) | ||
| Theorem | ssct 8966 | Any subset of a countable set is countable. (Contributed by Thierry Arnoux, 31-Jan-2017.) Avoid ax-pow 5301, ax-un 7663. (Revised by BTernaryTau, 7-Dec-2024.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | ||
| Theorem | difsnen 8967 | All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})) | ||
| Theorem | domdifsn 8968 | Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ (𝐵 ∖ {𝐶})) | ||
| Theorem | xpsnen 8969 | A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 × {𝐵}) ≈ 𝐴 | ||
| Theorem | xpsneng 8970 | A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) | ||
| Theorem | xp1en 8971 | One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 1o) ≈ 𝐴) | ||
| Theorem | endisj 8972* | Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) | ||
| Theorem | undom 8973 | Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5301. (Revised by BTernaryTau, 4-Dec-2024.) |
| ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≼ (𝐵 ∪ 𝐷)) | ||
| Theorem | xpcomf1o 8974* | The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) ⇒ ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) | ||
| Theorem | xpcomco 8975* | Composition with the bijection of xpcomf1o 8974 swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) & ⊢ 𝐺 = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (𝐺 ∘ 𝐹) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | ||
| Theorem | xpcomen 8976 | Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) | ||
| Theorem | xpcomeng 8977 | Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | ||
| Theorem | xpsnen2g 8978 | A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) | ||
| Theorem | xpassen 8979 | Associative law for equinumerosity of Cartesian product. Proposition 4.22(e) of [Mendelson] p. 254. (Contributed by NM, 22-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 × 𝐵) × 𝐶) ≈ (𝐴 × (𝐵 × 𝐶)) | ||
| Theorem | xpdom2 8980 | Dominance law for Cartesian product. Proposition 10.33(2) of [TakeutiZaring] p. 92. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) | ||
| Theorem | xpdom2g 8981 | Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) | ||
| Theorem | xpdom1g 8982 | Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | ||
| Theorem | xpdom3 8983 | A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of [Suppes] p. 98. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵)) | ||
| Theorem | xpdom1 8984 | Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by NM, 29-Mar-2006.) (Revised by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | ||
| Theorem | domunsncan 8985 | A singleton cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) | ||
| Theorem | omxpenlem 8986* | Lemma for omxpen 8987. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 25-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵)) | ||
| Theorem | omxpen 8987 | The cardinal and ordinal products are always equinumerous. Exercise 10 of [TakeutiZaring] p. 89. (Contributed by Mario Carneiro, 3-Mar-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ≈ (𝐴 × 𝐵)) | ||
| Theorem | omf1o 8988* | Construct an explicit bijection from 𝐴 ·o 𝐵 to 𝐵 ·o 𝐴. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) & ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) | ||
| Theorem | pw2f1olem 8989* | Lemma for pw2f1o 8990. (Contributed by Mario Carneiro, 6-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → ((𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (◡𝐺 “ {𝐶})))) | ||
| Theorem | pw2f1o 8990* | The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ⇒ ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑m 𝐴)) | ||
| Theorem | pw2eng 8991 | The power set of a set is equinumerous to set exponentiation with a base of ordinal 2o. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 1-Jul-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) | ||
| Theorem | pw2en 8992 | The power set of a set is equinumerous to set exponentiation with a base of ordinal 2. Proposition 10.44 of [TakeutiZaring] p. 96. This is Metamath 100 proof #52. (Contributed by NM, 29-Jan-2004.) (Proof shortened by Mario Carneiro, 1-Jul-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝒫 𝐴 ≈ (2o ↑m 𝐴) | ||
| Theorem | fopwdom 8993 | Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) (Revised by AV, 18-Sep-2021.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴) | ||
| Theorem | enfixsn 8994* | Given two equipollent sets, a bijection can always be chosen which fixes a single point. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) → ∃𝑓(𝑓:𝑋–1-1-onto→𝑌 ∧ (𝑓‘𝐴) = 𝐵)) | ||
| Theorem | sbthlem1 8995* | Lemma for sbth 9005. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) | ||
| Theorem | sbthlem2 8996* | Lemma for sbth 9005. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷) | ||
| Theorem | sbthlem3 8997* | Lemma for sbth 9005. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) | ||
| Theorem | sbthlem4 8998* | Lemma for sbth 9005. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) | ||
| Theorem | sbthlem5 8999* | Lemma for sbth 9005. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴) → dom 𝐻 = 𝐴) | ||
| Theorem | sbthlem6 9000* | Lemma for sbth 9005. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((ran 𝑓 ⊆ 𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |