HomeHome Metamath Proof Explorer
Theorem List (p. 90 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 8901-9000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremphp5 8901 Corollary of the Pigeonhole Principle php 8897: a natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.)
(𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴)
 
Theoremphpeqd 8902 Corollary of the Pigeonhole Principle using equality. Strengthening of php 8897 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵𝐴)    &   (𝜑𝐴𝐵)       (𝜑𝐴 = 𝐵)
 
Theoremsnnen2o 8903 A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.)
¬ {𝐴} ≈ 2o
 
Theoremnndomog 8904 Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 8947 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 8947. (Revised by RP, 5-Nov-2023.)
((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
 
2.4.29  Finite sets
 
Theoremdif1enlem 8905 Lemma for rexdif1en 8906 and dif1en 8907. (Contributed by BTernaryTau, 18-Aug-2024.)
((𝐹𝑉𝑀 ∈ ω ∧ 𝐹:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝐹𝑀)}) ≈ 𝑀)
 
Theoremrexdif1en 8906* If a set is equinumerous to a nonzero finite ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.)
((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
 
Theoremdif1en 8907 If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. For a proof with fewer symbols using ax-pow 5283, see dif1enALT 8980. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) Avoid ax-pow 5283. (Revised by BTernaryTau, 26-Aug-2024.)
((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
 
Theoremfindcard 8908* Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑𝜒))    &   (𝑥 = 𝑦 → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ Fin → (∀𝑧𝑦 𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2 8909* Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.) Avoid ax-pow 5283. (Revised by BTernaryTau, 26-Aug-2024.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ Fin → (𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2s 8910* Variation of findcard2 8909 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2d 8911* Deduction version of findcard2 8909. (Contributed by SO, 16-Jul-2018.)
(𝑥 = ∅ → (𝜓𝜒))    &   (𝑥 = 𝑦 → (𝜓𝜃))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &   (𝜑𝜒)    &   ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))    &   (𝜑𝐴 ∈ Fin)       (𝜑𝜂)
 
Theoremnnfi 8912 Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5283. (Revised by BTernaryTau, 23-Sep-2024.)
(𝐴 ∈ ω → 𝐴 ∈ Fin)
 
Theorempssnn 8913* A proper subset of a natural number is equinumerous to some smaller number. Lemma 6F of [Enderton] p. 137. (Contributed by NM, 22-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) Avoid ax-pow 5283. (Revised by BTernaryTau, 31-Jul-2024.)
((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥𝐴 𝐵𝑥)
 
Theoremssnnfi 8914 A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.)
((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
 
TheoremssnnfiOLD 8915 Obsolete version of ssnnfi 8914 as of 23-Sep-2024. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
 
Theorem0fin 8916 The empty set is finite. (Contributed by FL, 14-Jul-2008.)
∅ ∈ Fin
 
Theoremunfi 8917 The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.) Avoid ax-pow 5283. (Revised by BTernaryTau, 7-Aug-2024.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
 
Theoremssfi 8918 A subset of a finite set is finite. Corollary 6G of [Enderton] p. 138. For a shorter proof using ax-pow 5283, see ssfiALT 8919. (Contributed by NM, 24-Jun-1998.) Avoid ax-pow 5283. (Revised by BTernaryTau, 12-Aug-2024.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
 
TheoremssfiALT 8919 Shorter proof of ssfi 8918 using ax-pow 5283. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
 
Theoremimafi 8920 Images of finite sets are finite. For a shorter proof using ax-pow 5283, see imafiALT 9042. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid ax-pow 5283. (Revised by BTernaryTau, 7-Sep-2024.)
((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)
 
Theorempwfir 8921 If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024.)
(𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin)
 
Theorempwfilem 8922* Lemma for pwfi 8923. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5283. (Revised by BTernaryTau, 7-Sep-2024.)
𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥}))       (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin)
 
Theorempwfi 8923 The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5283. (Revised by BTernaryTau, 7-Sep-2024.)
(𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
 
Theoremcnvfi 8924 If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) Avoid ax-pow 5283. (Revised by BTernaryTau, 9-Sep-2024.)
(𝐴 ∈ Fin → 𝐴 ∈ Fin)
 
Theoremfnfi 8925 A version of fnex 7075 for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
 
Theoremf1oenfi 8926 If the domain of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1oeng 8714). (Contributed by BTernaryTau, 8-Sep-2024.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
 
Theoremf1oenfirn 8927 If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.)
((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
 
Theoremf1domfi 8928 If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 8715). (Contributed by BTernaryTau, 25-Sep-2024.)
((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
 
Theoremenreffi 8929 Equinumerosity is reflexive for finite sets, proved without using the Axiom of Power Sets (unlike enrefg 8727). (Contributed by BTernaryTau, 8-Sep-2024.)
(𝐴 ∈ Fin → 𝐴𝐴)
 
Theoremensymfib 8930 Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 8743). (Contributed by BTernaryTau, 9-Sep-2024.)
(𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
 
Theorementrfil 8931 Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8747). (Contributed by BTernaryTau, 10-Sep-2024.)
((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremenfii 8932 A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5283. (Revised by BTernaryTau, 23-Sep-2024.)
((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
 
Theoremenfi 8933 Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5283, see enfiALT 8934. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5283. (Revised by BTernaryTau, 23-Sep-2024.)
(𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
 
TheoremenfiALT 8934 Shorter proof of enfi 8933 using ax-pow 5283. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
 
Theoremdomfi 8935 A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
 
Theorementrfi 8936 Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8747). (Contributed by BTernaryTau, 23-Sep-2024.)
((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theorementrfir 8937 Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8747). (Contributed by BTernaryTau, 23-Sep-2024.)
((𝐶 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremdomtrfi 8938 Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr 8748). (Contributed by BTernaryTau, 17-Nov-2024.)
((𝐶 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremf1imaenfi 8939 If a function is one-to-one, then the image of a finite subset of its domain under it is equinumerous to the subset. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1imaeng 8755). (Contributed by BTernaryTau, 29-Sep-2024.)
((𝐹:𝐴1-1𝐵𝐶𝐴𝐶 ∈ Fin) → (𝐹𝐶) ≈ 𝐶)
 
Theoremssdomfi 8940 A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8741). (Contributed by BTernaryTau, 12-Nov-2024.)
(𝐵 ∈ Fin → (𝐴𝐵𝐴𝐵))
 
Theoremsbthfilem 8941* Lemma for sbthfi 8942. (Contributed by BTernaryTau, 4-Nov-2024.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))    &   𝐵 ∈ V       ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
 
Theoremsbthfi 8942 Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth 8833). (Contributed by BTernaryTau, 4-Nov-2024.)
((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
 
Theoremonomeneq 8943 An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.)
((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
 
Theoremonfin 8944 An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.)
(𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω))
 
Theoremonfin2 8945 A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.)
ω = (On ∩ Fin)
 
TheoremnnfiOLD 8946 Obsolete version of nnfi 8912 as of 23-Sep-2024. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∈ ω → 𝐴 ∈ Fin)
 
Theoremnndomo 8947 Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
 
Theoremnnsdomo 8948 Cardinal ordering agrees with natural number ordering. (Contributed by NM, 17-Jun-1998.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
 
Theoremsucdom 8949 Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.)
(𝐴 ∈ ω → (𝐴𝐵 ↔ suc 𝐴𝐵))
 
Theorem0sdom1dom 8950 Strict dominance over zero is the same as dominance over one. (Contributed by NM, 28-Sep-2004.)
(∅ ≺ 𝐴 ↔ 1o𝐴)
 
Theorem1sdom2 8951 Ordinal 1 is strictly dominated by ordinal 2. (Contributed by NM, 4-Apr-2007.)
1o ≺ 2o
 
Theoremsdom1 8952 A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.)
(𝐴 ≺ 1o𝐴 = ∅)
 
Theoremmodom 8953 Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
(∃*𝑥𝜑 ↔ {𝑥𝜑} ≼ 1o)
 
Theoremmodom2 8954* Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.)
(∃*𝑥 𝑥𝐴𝐴 ≼ 1o)
 
Theorem1sdom 8955* A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 8774.) (Contributed by Mario Carneiro, 12-Jan-2013.)
(𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
 
Theoremunxpdomlem1 8956* Lemma for unxpdom 8959. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.)
𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)    &   𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)       (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
 
Theoremunxpdomlem2 8957* Lemma for unxpdom 8959. (Contributed by Mario Carneiro, 13-Jan-2013.)
𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)    &   𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)    &   (𝜑𝑤 ∈ (𝑎𝑏))    &   (𝜑 → ¬ 𝑚 = 𝑛)    &   (𝜑 → ¬ 𝑠 = 𝑡)       ((𝜑 ∧ (𝑧𝑎 ∧ ¬ 𝑤𝑎)) → ¬ (𝐹𝑧) = (𝐹𝑤))
 
Theoremunxpdomlem3 8958* Lemma for unxpdom 8959. (Contributed by Mario Carneiro, 13-Jan-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)    &   𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)       ((1o𝑎 ∧ 1o𝑏) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
 
Theoremunxpdom 8959 Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
 
Theoremunxpdom2 8960 Corollary of unxpdom 8959. (Contributed by NM, 16-Sep-2004.)
((1o𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
 
Theoremsucxpdom 8961 Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
(1o𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴))
 
Theorempssinf 8962 A set equinumerous to a proper subset of itself is infinite. Corollary 6D(a) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.)
((𝐴𝐵𝐴𝐵) → ¬ 𝐵 ∈ Fin)
 
Theoremfisseneq 8963 A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)
 
Theoremominf 8964 The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.)
¬ ω ∈ Fin
 
Theoremisinf 8965* Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013.)
𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
 
Theoremfineqvlem 8966 Lemma for fineqv 8967. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)
 
Theoremfineqv 8967 If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.)
(¬ ω ∈ V ↔ Fin = V)
 
TheoremenfiiOLD 8968 Obsolete version of enfii 8932 as of 23-Sep-2024. (Contributed by Mario Carneiro, 12-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
 
TheorempssnnOLD 8969* Obsolete version of pssnn 8913 as of 31-Jul-2024. (Contributed by NM, 22-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥𝐴 𝐵𝑥)
 
Theoremxpfir 8970 The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.)
(((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
 
Theoremssfid 8971 A subset of a finite set is finite, deduction version of ssfi 8918. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵𝐴)       (𝜑𝐵 ∈ Fin)
 
Theoreminfi 8972 The intersection of two sets is finite if one of them is. (Contributed by Thierry Arnoux, 14-Feb-2017.)
(𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
 
Theoremrabfi 8973* A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.)
(𝐴 ∈ Fin → {𝑥𝐴𝜑} ∈ Fin)
 
Theoremfinresfin 8974 The restriction of a finite set is finite. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
(𝐸 ∈ Fin → (𝐸𝐵) ∈ Fin)
 
Theoremf1finf1o 8975 Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.)
((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
 
Theoremnfielex 8976* If a class is not finite, then it contains at least one element. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
𝐴 ∈ Fin → ∃𝑥 𝑥𝐴)
 
Theoremen1eqsn 8977 A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.)
((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
 
Theoremen1eqsnbi 8978 A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr 20460. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
(𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))
 
Theoremdiffi 8979 If 𝐴 is finite, (𝐴𝐵) is finite. (Contributed by FL, 3-Aug-2009.)
(𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
 
Theoremdif1enALT 8980 Alternate proof of dif1en 8907 with fewer symbols using ax-pow 5283. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
 
Theoremenp1ilem 8981 Lemma for uses of enp1i 8982. (Contributed by Mario Carneiro, 5-Jan-2016.)
𝑇 = ({𝑥} ∪ 𝑆)       (𝑥𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆𝐴 = 𝑇))
 
Theoremenp1i 8982* Proof induction for en2i 8733 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.)
𝑀 ∈ ω    &   𝑁 = suc 𝑀    &   ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)    &   (𝑥𝐴 → (𝜑𝜓))       (𝐴𝑁 → ∃𝑥𝜓)
 
Theoremen2 8983* A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016.)
(𝐴 ≈ 2o → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
 
Theoremen3 8984* A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016.)
(𝐴 ≈ 3o → ∃𝑥𝑦𝑧 𝐴 = {𝑥, 𝑦, 𝑧})
 
Theoremen4 8985* A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
(𝐴 ≈ 4o → ∃𝑥𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))
 
Theoremfindcard2OLD 8986* Obsolete version of findcard2 8909 as of 6-Aug-2024. (Contributed by Jeff Madsen, 8-Jul-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ Fin → (𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard3 8987* Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013.)
(𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦𝜑) → 𝜒))       (𝐴 ∈ Fin → 𝜏)
 
Theoremac6sfi 8988* A version of ac6s 10171 for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
(𝑦 = (𝑓𝑥) → (𝜑𝜓))       ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
 
Theoremfrfi 8989 A partial order is well-founded on a finite set. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
((𝑅 Po 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
 
Theoremfimax2g 8990* A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
 
Theoremfimaxg 8991* A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥))
 
Theoremfisupg 8992* Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
 
Theoremwofi 8993 A total order on a finite set is a well-order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
 
Theoremordunifi 8994 The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
 
Theoremnnunifi 8995 The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.)
((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → 𝑆 ∈ ω)
 
Theoremunblem1 8996* Lemma for unbnn 9000. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.)
(((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ 𝐵)
 
Theoremunblem2 8997* Lemma for unbnn 9000. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.)
𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)       ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
 
Theoremunblem3 8998* Lemma for unbnn 9000. The value of the function 𝐹 is less than its value at a successor. (Contributed by NM, 3-Dec-2003.)
𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)       ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ (𝐹‘suc 𝑧)))
 
Theoremunblem4 8999* Lemma for unbnn 9000. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.)
𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)       ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω–1-1𝐴)
 
Theoremunbnn 9000* Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 9347 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.)
((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ≈ ω)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >