![]() |
Metamath
Proof Explorer Theorem List (p. 90 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | elpmg 8901 | The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐶 ∧ 𝐶 ⊆ (𝐵 × 𝐴)))) | ||
Theorem | elpm2g 8902 | The predicate "is a partial function". (Contributed by NM, 31-Dec-2013.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | ||
Theorem | elpm2r 8903 | Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) | ||
Theorem | elpmi 8904 | A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.) |
⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) | ||
Theorem | pmfun 8905 | A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → Fun 𝐹) | ||
Theorem | elmapex 8906 | Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | ||
Theorem | elmapi 8907 | A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | ||
Theorem | mapfset 8908* | If 𝐵 is a set, the value of the set exponentiation (𝐵 ↑m 𝐴) is the class of all functions from 𝐴 to 𝐵. Generalisation of mapvalg 8894 (which does not require ax-rep 5303) to arbitrary domains. Note that the class {𝑓 ∣ 𝑓:𝐴⟶𝐵} can only contain set-functions, as opposed to arbitrary class-functions. When 𝐴 is a proper class, there can be no set-functions on it, so the above class is empty (see also fsetdmprc0 8913), hence a set. In this case, both sides of the equality in this theorem are the empty set. (Contributed by AV, 8-Aug-2024.) |
⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴)) | ||
Theorem | mapssfset 8909* | The value of the set exponentiation (𝐵 ↑m 𝐴) is a subset of the class of functions from 𝐴 to 𝐵. (Contributed by AV, 10-Aug-2024.) |
⊢ (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | ||
Theorem | mapfoss 8910* | The value of the set exponentiation (𝐵 ↑m 𝐴) is a superset of the set of all functions from 𝐴 onto 𝐵. (Contributed by AV, 7-Aug-2024.) |
⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) | ||
Theorem | fsetsspwxp 8911* | The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.) |
⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) | ||
Theorem | fset0 8912 | The set of functions from the empty set is the singleton containing the empty set. (Contributed by AV, 13-Sep-2024.) |
⊢ {𝑓 ∣ 𝑓:∅⟶𝐵} = {∅} | ||
Theorem | fsetdmprc0 8913* | The set of functions with a proper class as domain is empty. (Contributed by AV, 22-Aug-2024.) |
⊢ (𝐴 ∉ V → {𝑓 ∣ 𝑓 Fn 𝐴} = ∅) | ||
Theorem | fsetex 8914* | The set of functions between two classes exists if the codomain exists. Generalization of mapex 7979 to arbitrary domains. (Contributed by AV, 14-Aug-2024.) |
⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | ||
Theorem | f1setex 8915* | The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024.) |
⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ∈ V) | ||
Theorem | fosetex 8916* | The set of surjections between two classes exists (without any precondition). (Contributed by AV, 8-Aug-2024.) |
⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ∈ V | ||
Theorem | f1osetex 8917* | The set of bijections between two classes exists. (Contributed by AV, 30-Mar-2024.) (Revised by AV, 8-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐵} ∈ V | ||
Theorem | fsetfcdm 8918* | The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} & ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) ⇒ ⊢ (𝑋 ∈ 𝐴 → 𝑆:𝐹⟶𝐵) | ||
Theorem | fsetfocdm 8919* | The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} & ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → 𝑆:𝐹–onto→𝐵) | ||
Theorem | fsetprcnex 8920* | The class of all functions from a nonempty set 𝐴 into a proper class 𝐵 is not a set. If one of the preconditions is not fufilled, then {𝑓 ∣ 𝑓:𝐴⟶𝐵} is a set, see fsetdmprc0 8913 for 𝐴 ∉ V, fset0 8912 for 𝐴 = ∅, and fsetex 8914 for 𝐵 ∈ V, see also fsetexb 8922. (Contributed by AV, 14-Sep-2024.) (Proof shortened by BJ, 15-Sep-2024.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) | ||
Theorem | fsetcdmex 8921* | The class of all functions from a nonempty set 𝐴 into a class 𝐵 is a set iff 𝐵 is a set . (Contributed by AV, 15-Sep-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (𝐵 ∈ V ↔ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V)) | ||
Theorem | fsetexb 8922* | The class of all functions from a class 𝐴 into a class 𝐵 is a set iff 𝐵 is a set or 𝐴 is not a set or 𝐴 is empty. (Contributed by AV, 15-Sep-2024.) |
⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V ↔ (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V)) | ||
Theorem | elmapfn 8923 | A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) | ||
Theorem | elmapfun 8924 | A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → Fun 𝐴) | ||
Theorem | elmapssres 8925 | A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑m 𝐷)) | ||
Theorem | fpmg 8926 | A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) | ||
Theorem | pmss12g 8927 | Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) | ||
Theorem | pmresg 8928 | Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) | ||
Theorem | elmap 8929 | Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐴) | ||
Theorem | mapval2 8930* | Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ↑m 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) | ||
Theorem | elpm 8931 | The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴))) | ||
Theorem | elpm2 8932 | The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) | ||
Theorem | fpm 8933 | A total function is a partial function. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ∈ (𝐵 ↑pm 𝐴)) | ||
Theorem | mapsspm 8934 | Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) | ||
Theorem | pmsspw 8935 | Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | ||
Theorem | mapsspw 8936 | Set exponentiation is a subset of the power set of the Cartesian product of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | ||
Theorem | mapfvd 8937 | The value of a function that maps from 𝐵 to 𝐴. (Contributed by AV, 2-Feb-2023.) |
⊢ 𝑀 = (𝐴 ↑m 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐴) | ||
Theorem | elmapresaun 8938 | fresaun 6792 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵))) | ||
Theorem | fvmptmap 8939* | Special case of fvmpt 7029 for operator theorems. (Contributed by NM, 27-Nov-2007.) |
⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝑅 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) & ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) ⇒ ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) | ||
Theorem | map0e 8940 | Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 14-Jul-2022.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ∅) = 1o) | ||
Theorem | map0b 8941 | Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅) | ||
Theorem | map0g 8942 | Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) | ||
Theorem | 0map0sn0 8943 | The set of mappings of the empty set to the empty set is the singleton containing the empty set. (Contributed by AV, 31-Mar-2024.) |
⊢ (∅ ↑m ∅) = {∅} | ||
Theorem | mapsnd 8944* | The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 ↑m {𝐵}) = {𝑓 ∣ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}}) | ||
Theorem | map0 8945 | Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ↑m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)) | ||
Theorem | mapsn 8946* | The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ↑m {𝐵}) = {𝑓 ∣ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}} | ||
Theorem | mapss 8947 | Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) | ||
Theorem | fdiagfn 8948* | Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑m 𝐼)) | ||
Theorem | fvdiagfn 8949* | Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) | ||
Theorem | mapsnconst 8950 | Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝑆 = {𝑋} & ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V ⇒ ⊢ (𝐹 ∈ (𝐵 ↑m 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) | ||
Theorem | mapsncnv 8951* | Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ 𝑆 = {𝑋} & ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) ⇒ ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) | ||
Theorem | mapsnf1o2 8952* | Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ 𝑆 = {𝑋} & ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) ⇒ ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 | ||
Theorem | mapsnf1o3 8953* | Explicit bijection in the reverse of mapsnf1o2 8952. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
⊢ 𝑆 = {𝑋} & ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) ⇒ ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) | ||
Theorem | ralxpmap 8954* | Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ (𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉}) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐽 ∈ 𝑇 → (∀𝑓 ∈ (𝑆 ↑m 𝑇)𝜑 ↔ ∀𝑦 ∈ 𝑆 ∀𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽}))𝜓)) | ||
Syntax | cixp 8955 | Extend class notation to include infinite Cartesian products. |
class X𝑥 ∈ 𝐴 𝐵 | ||
Definition | df-ixp 8956* | Definition of infinite Cartesian product of [Enderton] p. 54. Enderton uses a bold "X" with 𝑥 ∈ 𝐴 written underneath or as a subscript, as does Stoll p. 47. Some books use a capital pi, but we will reserve that notation for products of numbers. Usually 𝐵 represents a class expression containing 𝑥 free and thus can be thought of as 𝐵(𝑥). Normally, 𝑥 is not free in 𝐴, although this is not a requirement of the definition. (Contributed by NM, 28-Sep-2006.) |
⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | ||
Theorem | dfixp 8957* | Eliminate the expression {𝑥 ∣ 𝑥 ∈ 𝐴} in df-ixp 8956, under the assumption that 𝐴 and 𝑥 are disjoint. This way, we can say that 𝑥 is bound in X𝑥 ∈ 𝐴𝐵 even if it appears free in 𝐴. (Contributed by Mario Carneiro, 12-Aug-2016.) |
⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | ||
Theorem | ixpsnval 8958* | The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.) |
⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) | ||
Theorem | elixp2 8959* | Membership in an infinite Cartesian product. See df-ixp 8956 for discussion of the notation. (Contributed by NM, 28-Sep-2006.) |
⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
Theorem | fvixp 8960* | Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) | ||
Theorem | ixpfn 8961* | A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.) |
⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) | ||
Theorem | elixp 8962* | Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
Theorem | elixpconst 8963* | Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by NM, 12-Apr-2008.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵) | ||
Theorem | ixpconstg 8964* | Infinite Cartesian product of a constant 𝐵. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) | ||
Theorem | ixpconst 8965* | Infinite Cartesian product of a constant 𝐵. (Contributed by NM, 28-Sep-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴) | ||
Theorem | ixpeq1 8966* | Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) | ||
Theorem | ixpeq1d 8967* | Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) | ||
Theorem | ss2ixp 8968 | Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | ||
Theorem | ixpeq2 8969 | Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | ||
Theorem | ixpeq2dva 8970* | Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | ||
Theorem | ixpeq2dv 8971* | Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | ||
Theorem | cbvixp 8972* | Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.) |
⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 | ||
Theorem | cbvixpv 8973* | Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 | ||
Theorem | nfixpw 8974* | Bound-variable hypothesis builder for indexed Cartesian product. Version of nfixp 8975 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-13 2380. (Revised by GG, 26-Jan-2024.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 | ||
Theorem | nfixp 8975 | Bound-variable hypothesis builder for indexed Cartesian product. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfixpw 8974 when possible. (Contributed by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 | ||
Theorem | nfixp1 8976 | The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 | ||
Theorem | ixpprc 8977* | A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.) |
⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) | ||
Theorem | ixpf 8978* | A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.) |
⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | uniixp 8979* | The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | ixpexg 8980* | The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 25-Jan-2015.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
Theorem | ixpin 8981* | The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ X𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (X𝑥 ∈ 𝐴 𝐵 ∩ X𝑥 ∈ 𝐴 𝐶) | ||
Theorem | ixpiin 8982* | The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) |
⊢ (𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝐶) | ||
Theorem | ixpint 8983* | The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ (𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) | ||
Theorem | ixp0x 8984 | An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.) |
⊢ X𝑥 ∈ ∅ 𝐴 = {∅} | ||
Theorem | ixpssmap2g 8985* | An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 8986 avoids ax-rep 5303. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | ||
Theorem | ixpssmapg 8986* | An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | ||
Theorem | 0elixp 8987 | Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.) |
⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 | ||
Theorem | ixpn0 8988 | The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10552. (Contributed by Mario Carneiro, 22-Jun-2016.) |
⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | ||
Theorem | ixp0 8989 | The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10552. (Contributed by NM, 1-Oct-2006.) (Proof shortened by Mario Carneiro, 22-Jun-2016.) |
⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) | ||
Theorem | ixpssmap 8990* | An infinite Cartesian product is a subset of set exponentiation. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.) |
⊢ 𝐵 ∈ V ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) | ||
Theorem | resixp 8991* | Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.) |
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) | ||
Theorem | undifixp 8992* | Union of two projections of a cartesian product. (Contributed by FL, 7-Nov-2011.) |
⊢ ((𝐹 ∈ X𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ∪ 𝐺) ∈ X𝑥 ∈ 𝐴 𝐶) | ||
Theorem | mptelixpg 8993* | Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.) |
⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) | ||
Theorem | resixpfo 8994* | Restriction of elements of an infinite Cartesian product creates a surjection, if the original Cartesian product is nonempty. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝐹 = (𝑓 ∈ X𝑥 ∈ 𝐴 𝐶 ↦ (𝑓 ↾ 𝐵)) ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ X𝑥 ∈ 𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥 ∈ 𝐴 𝐶–onto→X𝑥 ∈ 𝐵 𝐶) | ||
Theorem | elixpsn 8995* | Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝐴, 𝑦〉})) | ||
Theorem | ixpsnf1o 8996* | A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) | ||
Theorem | mapsnf1o 8997* | A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑m {𝐼})) | ||
Theorem | boxriin 8998* | A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (∀𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → X𝑥 ∈ 𝐼 𝐴 = (X𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) | ||
Theorem | boxcutc 8999* | The relative complement of a box set restricted on one axis. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵) → (X𝑘 ∈ 𝐴 𝐵 ∖ X𝑘 ∈ 𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵)) = X𝑘 ∈ 𝐴 if(𝑘 = 𝑋, (𝐵 ∖ 𝐶), 𝐵)) | ||
Syntax | cen 9000 | Extend class definition to include the equinumerosity relation ("approximately equals" symbol) |
class ≈ |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |