| Metamath
Proof Explorer Theorem List (p. 90 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ixpssmapg 8901* | An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | ||
| Theorem | 0elixp 8902 | Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.) |
| ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 | ||
| Theorem | ixpn0 8903 | The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10436. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | ||
| Theorem | ixp0 8904 | The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10436. (Contributed by NM, 1-Oct-2006.) (Proof shortened by Mario Carneiro, 22-Jun-2016.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) | ||
| Theorem | ixpssmap 8905* | An infinite Cartesian product is a subset of set exponentiation. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) | ||
| Theorem | resixp 8906* | Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.) |
| ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | undifixp 8907* | Union of two projections of a cartesian product. (Contributed by FL, 7-Nov-2011.) |
| ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ∪ 𝐺) ∈ X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | mptelixpg 8908* | Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.) |
| ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) | ||
| Theorem | resixpfo 8909* | Restriction of elements of an infinite Cartesian product creates a surjection, if the original Cartesian product is nonempty. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝐹 = (𝑓 ∈ X𝑥 ∈ 𝐴 𝐶 ↦ (𝑓 ↾ 𝐵)) ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ X𝑥 ∈ 𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥 ∈ 𝐴 𝐶–onto→X𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | elixpsn 8910* | Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐹 = {〈𝐴, 𝑦〉})) | ||
| Theorem | ixpsnf1o 8911* | A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) | ||
| Theorem | mapsnf1o 8912* | A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑m {𝐼})) | ||
| Theorem | boxriin 8913* | A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (∀𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → X𝑥 ∈ 𝐼 𝐴 = (X𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) | ||
| Theorem | boxcutc 8914* | The relative complement of a box set restricted on one axis. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵) → (X𝑘 ∈ 𝐴 𝐵 ∖ X𝑘 ∈ 𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵)) = X𝑘 ∈ 𝐴 if(𝑘 = 𝑋, (𝐵 ∖ 𝐶), 𝐵)) | ||
| Syntax | cen 8915 | Extend class definition to include the equinumerosity relation ("approximately equals" symbol) |
| class ≈ | ||
| Syntax | cdom 8916 | Extend class definition to include the dominance relation (curly "less than or equal to") |
| class ≼ | ||
| Syntax | csdm 8917 | Extend class definition to include the strict dominance relation (curly less-than) |
| class ≺ | ||
| Syntax | cfn 8918 | Extend class definition to include the class of all finite sets. |
| class Fin | ||
| Definition | df-en 8919* | Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8928. (Contributed by NM, 28-Mar-1998.) |
| ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | ||
| Definition | df-dom 8920* | Define the dominance relation. For an alternate definition see dfdom2 8949. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 8932 and domen 8933. (Contributed by NM, 28-Mar-1998.) |
| ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | ||
| Definition | df-sdom 8921 | Define the strict dominance relation. Alternate possible definitions are derived as brsdom 8946 and brsdom2 9065. Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.) |
| ⊢ ≺ = ( ≼ ∖ ≈ ) | ||
| Definition | df-fin 8922* | Define the (proper) class of all finite sets. Similar to Definition 10.29 of [TakeutiZaring] p. 91, whose "Fin(a)" corresponds to our "𝑎 ∈ Fin". This definition is meaningful whether or not we accept the Axiom of Infinity ax-inf2 9594. If we accept Infinity, we can also express 𝐴 ∈ Fin by 𝐴 ≺ ω (Theorem isfinite 9605.) (Contributed by NM, 22-Aug-2008.) |
| ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} | ||
| Theorem | relen 8923 | Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
| ⊢ Rel ≈ | ||
| Theorem | reldom 8924 | Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
| ⊢ Rel ≼ | ||
| Theorem | relsdom 8925 | Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
| ⊢ Rel ≺ | ||
| Theorem | encv 8926 | If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | breng 8927* | Equinumerosity relation. This variation of bren 8928 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of bren 8928. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | ||
| Theorem | bren 8928* | Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 8927 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | ||
| Theorem | brdom2g 8929* | Dominance relation. This variation of brdomg 8930 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of brdomg 8930. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | ||
| Theorem | brdomg 8930* | Dominance relation. (Contributed by NM, 15-Jun-1998.) Extract brdom2g 8929 as an intermediate result. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | ||
| Theorem | brdomi 8931* | Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) Avoid ax-un 7711. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) | ||
| Theorem | brdom 8932* | Dominance relation. (Contributed by NM, 15-Jun-1998.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) | ||
| Theorem | domen 8933* | Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) | ||
| Theorem | domeng 8934* | Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) | ||
| Theorem | ctex 8935 | A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
| ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | ||
| Theorem | f1oen4g 8936 | The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 8942 does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.) |
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1dom4g 8937 | The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 8943 does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.) |
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | f1oen3g 8938 | The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 8942 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1dom3g 8939 | The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 8943 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by BTernaryTau, 9-Sep-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | f1oen2g 8940 | The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 8942 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1dom2g 8941 | The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 8943 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) (Proof shortened by BTernaryTau, 25-Sep-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | f1oeng 8942 | The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1domg 8943 | The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) | ||
| Theorem | f1oen 8944 | The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) | ||
| Theorem | f1dom 8945 | The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 19-Jun-1998.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵) | ||
| Theorem | brsdom 8946 | Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.) |
| ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | ||
| Theorem | isfi 8947* | Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
| ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | ||
| Theorem | enssdom 8948 | Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.) |
| ⊢ ≈ ⊆ ≼ | ||
| Theorem | dfdom2 8949 | Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
| ⊢ ≼ = ( ≺ ∪ ≈ ) | ||
| Theorem | endom 8950 | Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
| ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | ||
| Theorem | sdomdom 8951 | Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
| ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | ||
| Theorem | sdomnen 8952 | Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
| ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | ||
| Theorem | brdom2 8953 | Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.) |
| ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | ||
| Theorem | bren2 8954 | Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.) |
| ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) | ||
| Theorem | enrefg 8955 | Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | ||
| Theorem | enref 8956 | Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ≈ 𝐴 | ||
| Theorem | eqeng 8957 | Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) | ||
| Theorem | domrefg 8958 | Dominance is reflexive. (Contributed by NM, 18-Jun-1998.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ 𝐴) | ||
| Theorem | en2d 8959* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑋)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝑌)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) | ||
| Theorem | en3d 8960* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) | ||
| Theorem | en2i 8961* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) & ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) ⇒ ⊢ 𝐴 ≈ 𝐵 | ||
| Theorem | en3i 8962* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ 𝐴 ≈ 𝐵 | ||
| Theorem | dom2lem 8963* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) | ||
| Theorem | dom2d 8964* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵)) | ||
| Theorem | dom3d 8965* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐴 ≼ 𝐵) | ||
| Theorem | dom2 8966* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐴 ≼ 𝐵) | ||
| Theorem | dom3 8967* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ 𝐵) | ||
| Theorem | idssen 8968 | Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ I ⊆ ≈ | ||
| Theorem | domssl 8969 | If 𝐴 is a subset of 𝐵 and 𝐶 dominates 𝐵, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | domssr 8970 | If 𝐶 is a superset of 𝐵 and 𝐵 dominates 𝐴, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) | ||
| Theorem | ssdomg 8971 | A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | ||
| Theorem | ener 8972 | Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.) |
| ⊢ ≈ Er V | ||
| Theorem | ensymb 8973 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | ||
| Theorem | ensym 8974 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | ||
| Theorem | ensymi 8975 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 ⇒ ⊢ 𝐵 ≈ 𝐴 | ||
| Theorem | ensymd 8976 | Symmetry of equinumerosity. Deduction form of ensym 8974. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≈ 𝐴) | ||
| Theorem | entr 8977 | Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
| Theorem | domtr 8978 | Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | entri 8979 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐴 ≈ 𝐶 | ||
| Theorem | entr2i 8980 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐶 ≈ 𝐴 | ||
| Theorem | entr3i 8981 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐴 ≈ 𝐶 ⇒ ⊢ 𝐵 ≈ 𝐶 | ||
| Theorem | entr4i 8982 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐶 ≈ 𝐵 ⇒ ⊢ 𝐴 ≈ 𝐶 | ||
| Theorem | endomtr 8983 | Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | domentr 8984 | Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | f1imaeng 8985 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
| Theorem | f1imaen2g 8986 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng 8985 does not need ax-rep 5234.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
| Theorem | f1imaen3g 8987 | If a set function is one-to-one, then a subset of its domain is equinumerous to the image of that subset. (This version of f1imaeng 8985 does not need ax-rep 5234 nor ax-pow 5320.) (Contributed by BTernaryTau, 13-Jan-2025.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ 𝑉) → 𝐶 ≈ (𝐹 “ 𝐶)) | ||
| Theorem | f1imaen 8988 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
| Theorem | en0 8989 | The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5320, ax-un 7711. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | ||
| Theorem | en0ALT 8990 | Shorter proof of en0 8989, depending on ax-pow 5320 and ax-un 7711. (Contributed by NM, 27-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | ||
| Theorem | en0r 8991 | The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.) |
| ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) | ||
| Theorem | ensn1 8992 | A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7711. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ≈ 1o | ||
| Theorem | ensn1g 8993 | A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | ||
| Theorem | enpr1g 8994 | {𝐴, 𝐴} has only one element. (Contributed by FL, 15-Feb-2010.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ≈ 1o) | ||
| Theorem | en1 8995* | A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) Avoid ax-un 7711. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | ||
| Theorem | en1b 8996 | A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7711. (Revised by BTernaryTau, 24-Sep-2024.) |
| ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) | ||
| Theorem | reuen1 8997* | Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} ≈ 1o) | ||
| Theorem | euen1 8998 | Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) | ||
| Theorem | euen1b 8999* | Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | en1uniel 9000 | A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) Avoid ax-un 7711. (Revised by BTernaryTau, 24-Sep-2024.) |
| ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |