| Metamath
Proof Explorer Theorem List (p. 90 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | f1oen2g 8901 | The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 8903 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1dom2g 8902 | The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 8904 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) (Proof shortened by BTernaryTau, 25-Sep-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | f1oeng 8903 | The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1domg 8904 | The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) | ||
| Theorem | f1oen 8905 | The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) | ||
| Theorem | f1dom 8906 | The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 19-Jun-1998.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵) | ||
| Theorem | brsdom 8907 | Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.) |
| ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | ||
| Theorem | isfi 8908* | Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
| ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | ||
| Theorem | enssdom 8909 | Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.) |
| ⊢ ≈ ⊆ ≼ | ||
| Theorem | dfdom2 8910 | Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
| ⊢ ≼ = ( ≺ ∪ ≈ ) | ||
| Theorem | endom 8911 | Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
| ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | ||
| Theorem | sdomdom 8912 | Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
| ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | ||
| Theorem | sdomnen 8913 | Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
| ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | ||
| Theorem | brdom2 8914 | Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.) |
| ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | ||
| Theorem | bren2 8915 | Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.) |
| ⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) | ||
| Theorem | enrefg 8916 | Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | ||
| Theorem | enref 8917 | Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ≈ 𝐴 | ||
| Theorem | eqeng 8918 | Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) | ||
| Theorem | domrefg 8919 | Dominance is reflexive. (Contributed by NM, 18-Jun-1998.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ 𝐴) | ||
| Theorem | en2d 8920* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑋)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝑌)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) | ||
| Theorem | en3d 8921* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) | ||
| Theorem | en2i 8922* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) & ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) ⇒ ⊢ 𝐴 ≈ 𝐵 | ||
| Theorem | en3i 8923* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ 𝐴 ≈ 𝐵 | ||
| Theorem | dom2lem 8924* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) | ||
| Theorem | dom2d 8925* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵)) | ||
| Theorem | dom3d 8926* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐴 ≼ 𝐵) | ||
| Theorem | dom2 8927* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐴 ≼ 𝐵) | ||
| Theorem | dom3 8928* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ 𝐵) | ||
| Theorem | idssen 8929 | Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ I ⊆ ≈ | ||
| Theorem | domssl 8930 | If 𝐴 is a subset of 𝐵 and 𝐶 dominates 𝐵, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | domssr 8931 | If 𝐶 is a superset of 𝐵 and 𝐵 dominates 𝐴, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) | ||
| Theorem | ssdomg 8932 | A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | ||
| Theorem | ener 8933 | Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.) |
| ⊢ ≈ Er V | ||
| Theorem | ensymb 8934 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | ||
| Theorem | ensym 8935 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | ||
| Theorem | ensymi 8936 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 ⇒ ⊢ 𝐵 ≈ 𝐴 | ||
| Theorem | ensymd 8937 | Symmetry of equinumerosity. Deduction form of ensym 8935. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≈ 𝐴) | ||
| Theorem | entr 8938 | Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
| Theorem | domtr 8939 | Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | entri 8940 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐴 ≈ 𝐶 | ||
| Theorem | entr2i 8941 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐶 ≈ 𝐴 | ||
| Theorem | entr3i 8942 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐴 ≈ 𝐶 ⇒ ⊢ 𝐵 ≈ 𝐶 | ||
| Theorem | entr4i 8943 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| ⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐶 ≈ 𝐵 ⇒ ⊢ 𝐴 ≈ 𝐶 | ||
| Theorem | endomtr 8944 | Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | domentr 8945 | Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | f1imaeng 8946 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
| Theorem | f1imaen2g 8947 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng 8946 does not need ax-rep 5221.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
| Theorem | f1imaen3g 8948 | If a set function is one-to-one, then a subset of its domain is equinumerous to the image of that subset. (This version of f1imaeng 8946 does not need ax-rep 5221 nor ax-pow 5307.) (Contributed by BTernaryTau, 13-Jan-2025.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ 𝑉) → 𝐶 ≈ (𝐹 “ 𝐶)) | ||
| Theorem | f1imaen 8949 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
| Theorem | en0 8950 | The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5307, ax-un 7675. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | ||
| Theorem | en0ALT 8951 | Shorter proof of en0 8950, depending on ax-pow 5307 and ax-un 7675. (Contributed by NM, 27-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | ||
| Theorem | en0r 8952 | The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.) |
| ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) | ||
| Theorem | ensn1 8953 | A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7675. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ≈ 1o | ||
| Theorem | ensn1g 8954 | A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | ||
| Theorem | enpr1g 8955 | {𝐴, 𝐴} has only one element. (Contributed by FL, 15-Feb-2010.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ≈ 1o) | ||
| Theorem | en1 8956* | A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) Avoid ax-un 7675. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | ||
| Theorem | en1b 8957 | A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7675. (Revised by BTernaryTau, 24-Sep-2024.) |
| ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) | ||
| Theorem | reuen1 8958* | Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} ≈ 1o) | ||
| Theorem | euen1 8959 | Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) | ||
| Theorem | euen1b 8960* | Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | en1uniel 8961 | A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) Avoid ax-un 7675. (Revised by BTernaryTau, 24-Sep-2024.) |
| ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) | ||
| Theorem | 2dom 8962* | A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
| ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) | ||
| Theorem | fundmen 8963 | A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (Fun 𝐹 → dom 𝐹 ≈ 𝐹) | ||
| Theorem | fundmeng 8964 | A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) | ||
| Theorem | cnven 8965 | A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) | ||
| Theorem | cnvct 8966 | If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) | ||
| Theorem | fndmeng 8967 | A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐴 ≈ 𝐹) | ||
| Theorem | mapsnend 8968 | Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.) (Revised by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 ↑m {𝐵}) ≈ 𝐴) | ||
| Theorem | mapsnen 8969 | Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 17-Jul-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ↑m {𝐵}) ≈ 𝐴 | ||
| Theorem | snmapen 8970 | Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003.) (Revised by AV, 17-Jul-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴}) | ||
| Theorem | snmapen1 8971 | Set exponentiation: a singleton to any set is equinumerous to ordinal 1. (Proposed by BJ, 17-Jul-2022.) (Contributed by AV, 17-Jul-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ≈ 1o) | ||
| Theorem | map1 8972 | Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (1o ↑m 𝐴) ≈ 1o) | ||
| Theorem | en2sn 8973 | Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5307. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7675. (Revised by BTernaryTau, 25-Sep-2024.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) | ||
| Theorem | 0fi 8974 | The empty set is finite. (Contributed by FL, 14-Jul-2008.) Avoid ax-10 2142, ax-un 7675. (Revised by BTernaryTau, 13-Jan-2025.) |
| ⊢ ∅ ∈ Fin | ||
| Theorem | snfi 8975 | A singleton is finite. (Contributed by NM, 4-Nov-2002.) (Proof shortened by BTernaryTau, 13-Jan-2025.) |
| ⊢ {𝐴} ∈ Fin | ||
| Theorem | snfiOLD 8976 | Obsolete version of snfi 8975 as of 13-Jan-2025. (Contributed by NM, 4-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {𝐴} ∈ Fin | ||
| Theorem | fiprc 8977 | The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.) |
| ⊢ Fin ∉ V | ||
| Theorem | unen 8978 | Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) | ||
| Theorem | enrefnn 8979 | Equinumerosity is reflexive for finite ordinals, proved without using the Axiom of Power Sets (unlike enrefg 8916). (Contributed by BTernaryTau, 31-Jul-2024.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | ||
| Theorem | en2prd 8980 | Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ≠ 𝐷) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) | ||
| Theorem | enpr2d 8981 | A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-un 7675. (Revised by BTernaryTau, 23-Dec-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) | ||
| Theorem | ssct 8982 | Any subset of a countable set is countable. (Contributed by Thierry Arnoux, 31-Jan-2017.) Avoid ax-pow 5307, ax-un 7675. (Revised by BTernaryTau, 7-Dec-2024.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | ||
| Theorem | difsnen 8983 | All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})) | ||
| Theorem | domdifsn 8984 | Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ (𝐵 ∖ {𝐶})) | ||
| Theorem | xpsnen 8985 | A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 × {𝐵}) ≈ 𝐴 | ||
| Theorem | xpsneng 8986 | A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) | ||
| Theorem | xp1en 8987 | One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 1o) ≈ 𝐴) | ||
| Theorem | endisj 8988* | Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) | ||
| Theorem | undom 8989 | Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5307. (Revised by BTernaryTau, 4-Dec-2024.) |
| ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≼ (𝐵 ∪ 𝐷)) | ||
| Theorem | xpcomf1o 8990* | The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) ⇒ ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) | ||
| Theorem | xpcomco 8991* | Composition with the bijection of xpcomf1o 8990 swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) & ⊢ 𝐺 = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (𝐺 ∘ 𝐹) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | ||
| Theorem | xpcomen 8992 | Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) | ||
| Theorem | xpcomeng 8993 | Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | ||
| Theorem | xpsnen2g 8994 | A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) | ||
| Theorem | xpassen 8995 | Associative law for equinumerosity of Cartesian product. Proposition 4.22(e) of [Mendelson] p. 254. (Contributed by NM, 22-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 × 𝐵) × 𝐶) ≈ (𝐴 × (𝐵 × 𝐶)) | ||
| Theorem | xpdom2 8996 | Dominance law for Cartesian product. Proposition 10.33(2) of [TakeutiZaring] p. 92. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) | ||
| Theorem | xpdom2g 8997 | Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) | ||
| Theorem | xpdom1g 8998 | Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | ||
| Theorem | xpdom3 8999 | A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of [Suppes] p. 98. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵)) | ||
| Theorem | xpdom1 9000 | Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by NM, 29-Mar-2006.) (Revised by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |