Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffin1-5 | Structured version Visualization version GIF version |
Description: Compact quantifier-free version of the standard definition df-fin 8532. (Contributed by Stefan O'Rear, 6-Jan-2015.) |
Ref | Expression |
---|---|
dffin1-5 | ⊢ Fin = ( ≈ “ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 8576 | . . . 4 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑦 ≈ 𝑥) | |
2 | 1 | rexbii 3176 | . . 3 ⊢ (∃𝑦 ∈ ω 𝑥 ≈ 𝑦 ↔ ∃𝑦 ∈ ω 𝑦 ≈ 𝑥) |
3 | 2 | abbii 2824 | . 2 ⊢ {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} = {𝑥 ∣ ∃𝑦 ∈ ω 𝑦 ≈ 𝑥} |
4 | df-fin 8532 | . 2 ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} | |
5 | dfima2 5904 | . 2 ⊢ ( ≈ “ ω) = {𝑥 ∣ ∃𝑦 ∈ ω 𝑦 ≈ 𝑥} | |
6 | 3, 4, 5 | 3eqtr4i 2792 | 1 ⊢ Fin = ( ≈ “ ω) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2736 ∃wrex 3072 class class class wbr 5033 “ cima 5528 ωcom 7580 ≈ cen 8525 Fincfn 8528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-er 8300 df-en 8529 df-fin 8532 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |