| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffin1-5 | Structured version Visualization version GIF version | ||
| Description: Compact quantifier-free version of the standard definition df-fin 8873. (Contributed by Stefan O'Rear, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| dffin1-5 | ⊢ Fin = ( ≈ “ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymb 8924 | . . . 4 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑦 ≈ 𝑥) | |
| 2 | 1 | rexbii 3079 | . . 3 ⊢ (∃𝑦 ∈ ω 𝑥 ≈ 𝑦 ↔ ∃𝑦 ∈ ω 𝑦 ≈ 𝑥) |
| 3 | 2 | abbii 2798 | . 2 ⊢ {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} = {𝑥 ∣ ∃𝑦 ∈ ω 𝑦 ≈ 𝑥} |
| 4 | df-fin 8873 | . 2 ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} | |
| 5 | dfima2 6010 | . 2 ⊢ ( ≈ “ ω) = {𝑥 ∣ ∃𝑦 ∈ ω 𝑦 ≈ 𝑥} | |
| 6 | 3, 4, 5 | 3eqtr4i 2764 | 1 ⊢ Fin = ( ≈ “ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2709 ∃wrex 3056 class class class wbr 5089 “ cima 5617 ωcom 7796 ≈ cen 8866 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-er 8622 df-en 8870 df-fin 8873 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |