MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffin1-5 Structured version   Visualization version   GIF version

Theorem dffin1-5 10457
Description: Compact quantifier-free version of the standard definition df-fin 9007. (Contributed by Stefan O'Rear, 6-Jan-2015.)
Assertion
Ref Expression
dffin1-5 Fin = ( ≈ “ ω)

Proof of Theorem dffin1-5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensymb 9062 . . . 4 (𝑥𝑦𝑦𝑥)
21rexbii 3100 . . 3 (∃𝑦 ∈ ω 𝑥𝑦 ↔ ∃𝑦 ∈ ω 𝑦𝑥)
32abbii 2812 . 2 {𝑥 ∣ ∃𝑦 ∈ ω 𝑥𝑦} = {𝑥 ∣ ∃𝑦 ∈ ω 𝑦𝑥}
4 df-fin 9007 . 2 Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥𝑦}
5 dfima2 6091 . 2 ( ≈ “ ω) = {𝑥 ∣ ∃𝑦 ∈ ω 𝑦𝑥}
63, 4, 53eqtr4i 2778 1 Fin = ( ≈ “ ω)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {cab 2717  wrex 3076   class class class wbr 5166  cima 5703  ωcom 7903  cen 9000  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-er 8763  df-en 9004  df-fin 9007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator