| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffin1-5 | Structured version Visualization version GIF version | ||
| Description: Compact quantifier-free version of the standard definition df-fin 8899. (Contributed by Stefan O'Rear, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| dffin1-5 | ⊢ Fin = ( ≈ “ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymb 8950 | . . . 4 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑦 ≈ 𝑥) | |
| 2 | 1 | rexbii 3076 | . . 3 ⊢ (∃𝑦 ∈ ω 𝑥 ≈ 𝑦 ↔ ∃𝑦 ∈ ω 𝑦 ≈ 𝑥) |
| 3 | 2 | abbii 2796 | . 2 ⊢ {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} = {𝑥 ∣ ∃𝑦 ∈ ω 𝑦 ≈ 𝑥} |
| 4 | df-fin 8899 | . 2 ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} | |
| 5 | dfima2 6022 | . 2 ⊢ ( ≈ “ ω) = {𝑥 ∣ ∃𝑦 ∈ ω 𝑦 ≈ 𝑥} | |
| 6 | 3, 4, 5 | 3eqtr4i 2762 | 1 ⊢ Fin = ( ≈ “ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2707 ∃wrex 3053 class class class wbr 5102 “ cima 5634 ωcom 7822 ≈ cen 8892 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-er 8648 df-en 8896 df-fin 8899 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |