| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| relen | ⊢ Rel ≈ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-en 8960 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 2 | 1 | relopabiv 5799 | 1 ⊢ Rel ≈ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Rel wrel 5659 –1-1-onto→wf1o 6530 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-opab 5182 df-xp 5660 df-rel 5661 df-en 8960 |
| This theorem is referenced by: encv 8967 isfi 8990 enssdom 8991 ener 9015 enfixsn 9095 sbthcl 9109 xpen 9154 pwen 9164 php3OLD 9233 f1finf1oOLD 9278 mapfien2 9421 isnum2 9959 inffien 10077 djuen 10184 djuenun 10185 cdainflem 10202 djulepw 10207 infmap2 10231 fin4i 10312 fin4en1 10323 isfin4p1 10329 enfin2i 10335 fin45 10406 axcc3 10452 engch 10642 hargch 10687 hasheni 14366 pmtrfv 19433 frgpcyg 21534 lbslcic 21801 phpreu 37628 ctbnfien 42841 |
| Copyright terms: Public domain | W3C validator |