| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| relen | ⊢ Rel ≈ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-en 8873 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 2 | 1 | relopabiv 5763 | 1 ⊢ Rel ≈ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Rel wrel 5624 –1-1-onto→wf1o 6481 ≈ cen 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-opab 5155 df-xp 5625 df-rel 5626 df-en 8873 |
| This theorem is referenced by: encv 8880 isfi 8901 enssdom 8902 ener 8926 enfixsn 9003 sbthcl 9016 xpen 9057 pwen 9067 mapfien2 9299 isnum2 9841 inffien 9957 djuen 10064 djuenun 10065 cdainflem 10082 djulepw 10087 infmap2 10111 fin4i 10192 fin4en1 10203 isfin4p1 10209 enfin2i 10215 fin45 10286 axcc3 10332 engch 10522 hargch 10567 hasheni 14255 pmtrfv 19331 frgpcyg 21480 lbslcic 21748 phpreu 37594 ctbnfien 42801 |
| Copyright terms: Public domain | W3C validator |