| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| relen | ⊢ Rel ≈ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-en 8870 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 2 | 1 | relopabiv 5759 | 1 ⊢ Rel ≈ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 Rel wrel 5619 –1-1-onto→wf1o 6480 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-en 8870 |
| This theorem is referenced by: encv 8877 isfi 8898 enssdom 8899 ener 8923 enfixsn 8999 sbthcl 9012 xpen 9053 pwen 9063 mapfien2 9293 isnum2 9838 inffien 9954 djuen 10061 djuenun 10062 cdainflem 10079 djulepw 10084 infmap2 10108 fin4i 10189 fin4en1 10200 isfin4p1 10206 enfin2i 10212 fin45 10283 axcc3 10329 engch 10519 hargch 10564 hasheni 14255 pmtrfv 19364 frgpcyg 21510 lbslcic 21778 phpreu 37654 ctbnfien 42921 |
| Copyright terms: Public domain | W3C validator |