Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version |
Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
relen | ⊢ Rel ≈ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-en 8549 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
2 | 1 | relopabiv 5658 | 1 ⊢ Rel ≈ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1786 Rel wrel 5524 –1-1-onto→wf1o 6332 ≈ cen 8545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3399 df-in 3848 df-ss 3858 df-opab 5090 df-xp 5525 df-rel 5526 df-en 8549 |
This theorem is referenced by: encv 8556 isfi 8572 enssdom 8573 ener 8595 en1uniel 8621 enfixsn 8668 sbthcl 8682 xpen 8723 pwen 8733 php3 8746 f1finf1o 8816 mapfien2 8939 isnum2 9440 inffien 9556 djuen 9662 djuenun 9663 cdainflem 9680 djulepw 9685 infmap2 9711 fin4i 9791 fin4en1 9802 isfin4p1 9808 enfin2i 9814 fin45 9885 axcc3 9931 engch 10121 hargch 10166 hasheni 13793 pmtrfv 18691 frgpcyg 20385 lbslcic 20650 phpreu 35373 ctbnfien 40196 |
Copyright terms: Public domain | W3C validator |