![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version |
Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
relen | ⊢ Rel ≈ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-en 8984 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
2 | 1 | relopabiv 5832 | 1 ⊢ Rel ≈ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1775 Rel wrel 5693 –1-1-onto→wf1o 6561 ≈ cen 8980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-opab 5210 df-xp 5694 df-rel 5695 df-en 8984 |
This theorem is referenced by: encv 8991 isfi 9014 enssdom 9015 ener 9039 enfixsn 9119 sbthcl 9133 xpen 9178 pwen 9188 php3OLD 9258 f1finf1oOLD 9303 mapfien2 9446 isnum2 9982 inffien 10100 djuen 10207 djuenun 10208 cdainflem 10225 djulepw 10230 infmap2 10254 fin4i 10335 fin4en1 10346 isfin4p1 10352 enfin2i 10358 fin45 10429 axcc3 10475 engch 10665 hargch 10710 hasheni 14383 pmtrfv 19484 frgpcyg 21609 lbslcic 21878 phpreu 37590 ctbnfien 42805 |
Copyright terms: Public domain | W3C validator |