MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relen Structured version   Visualization version   GIF version

Theorem relen 8923
Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
relen Rel ≈

Proof of Theorem relen
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-en 8919 . 2 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
21relopabiv 5783 1 Rel ≈
Colors of variables: wff setvar class
Syntax hints:  wex 1779  Rel wrel 5643  1-1-ontowf1o 6510  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-ss 3931  df-opab 5170  df-xp 5644  df-rel 5645  df-en 8919
This theorem is referenced by:  encv  8926  isfi  8947  enssdom  8948  ener  8972  enfixsn  9050  sbthcl  9063  xpen  9104  pwen  9114  f1finf1oOLD  9217  mapfien2  9360  isnum2  9898  inffien  10016  djuen  10123  djuenun  10124  cdainflem  10141  djulepw  10146  infmap2  10170  fin4i  10251  fin4en1  10262  isfin4p1  10268  enfin2i  10274  fin45  10345  axcc3  10391  engch  10581  hargch  10626  hasheni  14313  pmtrfv  19382  frgpcyg  21483  lbslcic  21750  phpreu  37598  ctbnfien  42806
  Copyright terms: Public domain W3C validator