| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| relen | ⊢ Rel ≈ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-en 8919 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 2 | 1 | relopabiv 5783 | 1 ⊢ Rel ≈ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Rel wrel 5643 –1-1-onto→wf1o 6510 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 df-en 8919 |
| This theorem is referenced by: encv 8926 isfi 8947 enssdom 8948 ener 8972 enfixsn 9050 sbthcl 9063 xpen 9104 pwen 9114 f1finf1oOLD 9217 mapfien2 9360 isnum2 9898 inffien 10016 djuen 10123 djuenun 10124 cdainflem 10141 djulepw 10146 infmap2 10170 fin4i 10251 fin4en1 10262 isfin4p1 10268 enfin2i 10274 fin45 10345 axcc3 10391 engch 10581 hargch 10626 hasheni 14313 pmtrfv 19382 frgpcyg 21483 lbslcic 21750 phpreu 37598 ctbnfien 42806 |
| Copyright terms: Public domain | W3C validator |