Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version |
Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
relen | ⊢ Rel ≈ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-en 8692 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel ≈ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1783 Rel wrel 5585 –1-1-onto→wf1o 6417 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-en 8692 |
This theorem is referenced by: encv 8699 isfi 8719 enssdom 8720 ener 8742 en1unielOLD 8773 enfixsn 8821 sbthcl 8835 xpen 8876 pwen 8886 php3 8899 f1finf1o 8975 mapfien2 9098 isnum2 9634 inffien 9750 djuen 9856 djuenun 9857 cdainflem 9874 djulepw 9879 infmap2 9905 fin4i 9985 fin4en1 9996 isfin4p1 10002 enfin2i 10008 fin45 10079 axcc3 10125 engch 10315 hargch 10360 hasheni 13990 pmtrfv 18975 frgpcyg 20693 lbslcic 20958 phpreu 35688 ctbnfien 40556 |
Copyright terms: Public domain | W3C validator |