| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| relen | ⊢ Rel ≈ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-en 8922 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 2 | 1 | relopabiv 5786 | 1 ⊢ Rel ≈ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Rel wrel 5646 –1-1-onto→wf1o 6513 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-en 8922 |
| This theorem is referenced by: encv 8929 isfi 8950 enssdom 8951 ener 8975 enfixsn 9055 sbthcl 9069 xpen 9110 pwen 9120 f1finf1oOLD 9224 mapfien2 9367 isnum2 9905 inffien 10023 djuen 10130 djuenun 10131 cdainflem 10148 djulepw 10153 infmap2 10177 fin4i 10258 fin4en1 10269 isfin4p1 10275 enfin2i 10281 fin45 10352 axcc3 10398 engch 10588 hargch 10633 hasheni 14320 pmtrfv 19389 frgpcyg 21490 lbslcic 21757 phpreu 37605 ctbnfien 42813 |
| Copyright terms: Public domain | W3C validator |