| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| relen | ⊢ Rel ≈ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-en 8896 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 2 | 1 | relopabiv 5774 | 1 ⊢ Rel ≈ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Rel wrel 5636 –1-1-onto→wf1o 6498 ≈ cen 8892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-en 8896 |
| This theorem is referenced by: encv 8903 isfi 8924 enssdom 8925 ener 8949 enfixsn 9027 sbthcl 9040 xpen 9081 pwen 9091 f1finf1oOLD 9193 mapfien2 9336 isnum2 9874 inffien 9992 djuen 10099 djuenun 10100 cdainflem 10117 djulepw 10122 infmap2 10146 fin4i 10227 fin4en1 10238 isfin4p1 10244 enfin2i 10250 fin45 10321 axcc3 10367 engch 10557 hargch 10602 hasheni 14289 pmtrfv 19366 frgpcyg 21515 lbslcic 21783 phpreu 37591 ctbnfien 42799 |
| Copyright terms: Public domain | W3C validator |