![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version |
Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
relen | ⊢ Rel ≈ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-en 9004 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel ≈ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1777 Rel wrel 5705 –1-1-onto→wf1o 6572 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-en 9004 |
This theorem is referenced by: encv 9011 isfi 9036 enssdom 9037 ener 9061 en1unielOLD 9094 enfixsn 9147 sbthcl 9161 xpen 9206 pwen 9216 php3OLD 9287 f1finf1oOLD 9334 mapfien2 9478 isnum2 10014 inffien 10132 djuen 10239 djuenun 10240 cdainflem 10257 djulepw 10262 infmap2 10286 fin4i 10367 fin4en1 10378 isfin4p1 10384 enfin2i 10390 fin45 10461 axcc3 10507 engch 10697 hargch 10742 hasheni 14397 pmtrfv 19494 frgpcyg 21615 lbslcic 21884 phpreu 37564 ctbnfien 42774 |
Copyright terms: Public domain | W3C validator |