![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version |
Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
relen | ⊢ Rel ≈ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-en 8946 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
2 | 1 | relopabiv 5820 | 1 ⊢ Rel ≈ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1780 Rel wrel 5681 –1-1-onto→wf1o 6542 ≈ cen 8942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-opab 5211 df-xp 5682 df-rel 5683 df-en 8946 |
This theorem is referenced by: encv 8953 isfi 8978 enssdom 8979 ener 9003 en1unielOLD 9035 enfixsn 9087 sbthcl 9101 xpen 9146 pwen 9156 php3OLD 9230 f1finf1oOLD 9278 mapfien2 9410 isnum2 9946 inffien 10064 djuen 10170 djuenun 10171 cdainflem 10188 djulepw 10193 infmap2 10219 fin4i 10299 fin4en1 10310 isfin4p1 10316 enfin2i 10322 fin45 10393 axcc3 10439 engch 10629 hargch 10674 hasheni 14315 pmtrfv 19368 frgpcyg 21438 lbslcic 21705 phpreu 36935 ctbnfien 42018 |
Copyright terms: Public domain | W3C validator |