Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfinite | Structured version Visualization version GIF version |
Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. The Axiom of Infinity is used for the forward implication. (Contributed by FL, 16-Apr-2011.) |
Ref | Expression |
---|---|
isfinite | ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9331 | . 2 ⊢ ω ∈ V | |
2 | isfiniteg 9004 | . 2 ⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ωcom 7687 ≺ csdm 8690 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 |
This theorem is referenced by: fict 9341 infxpenlem 9700 pwsdompw 9891 cflim2 9950 axcc4dom 10128 domtriom 10130 fin41 10131 dominf 10132 infinf 10253 dominfac 10260 canthp1lem2 10340 pwfseqlem3 10347 pwfseqlem4a 10348 pwfseqlem4 10349 gchpwdom 10357 gchaleph 10358 gchhar 10366 omina 10378 gchina 10386 tskpr 10457 rexpen 15865 odinf 19085 fctop2 22063 dis1stc 22558 iunmbl2 24626 dyadmbl 24669 f1ocnt 31025 sibfof 32207 pibt2 35515 mblfinlem1 35741 ovoliunnfl 35746 heiborlem3 35898 ctbnfien 40556 pellex 40573 numinfctb 40844 saluncl 43748 meadjun 43890 meaiunlelem 43896 omeunle 43944 |
Copyright terms: Public domain | W3C validator |