MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite Structured version   Visualization version   GIF version

Theorem isfinite 9190
Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. The Axiom of Infinity is used for the forward implication. (Contributed by FL, 16-Apr-2011.)
Assertion
Ref Expression
isfinite (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)

Proof of Theorem isfinite
StepHypRef Expression
1 omex 9181 . 2 ω ∈ V
2 isfiniteg 8854 . 2 (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω))
31, 2ax-mp 5 1 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wcel 2114  Vcvv 3398   class class class wbr 5030  ωcom 7601  csdm 8556  Fincfn 8557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-inf2 9179
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-om 7602  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-1o 8133  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-fin 8561
This theorem is referenced by:  fict  9191  infxpenlem  9515  pwsdompw  9706  cflim2  9765  axcc4dom  9943  domtriom  9945  fin41  9946  dominf  9947  infinf  10068  dominfac  10075  canthp1lem2  10155  pwfseqlem3  10162  pwfseqlem4a  10163  pwfseqlem4  10164  gchpwdom  10172  gchaleph  10173  gchhar  10181  omina  10193  gchina  10201  tskpr  10272  rexpen  15675  odinf  18810  fctop2  21758  dis1stc  22252  iunmbl2  24311  dyadmbl  24354  f1ocnt  30700  sibfof  31879  pibt2  35233  mblfinlem1  35459  ovoliunnfl  35464  heiborlem3  35616  ctbnfien  40234  pellex  40251  numinfctb  40522  saluncl  43422  meadjun  43564  meaiunlelem  43570  omeunle  43618
  Copyright terms: Public domain W3C validator