| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfinite | Structured version Visualization version GIF version | ||
| Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. The Axiom of Infinity is used for the forward implication. (Contributed by FL, 16-Apr-2011.) |
| Ref | Expression |
|---|---|
| isfinite | ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9539 | . 2 ⊢ ω ∈ V | |
| 2 | isfiniteg 9189 | . 2 ⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 ωcom 7799 ≺ csdm 8871 Fincfn 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 |
| This theorem is referenced by: fict 9549 infxpenlem 9907 pwsdompw 10097 cflim2 10157 axcc4dom 10335 domtriom 10337 fin41 10338 dominf 10339 infinf 10460 dominfac 10467 canthp1lem2 10547 pwfseqlem3 10554 pwfseqlem4a 10555 pwfseqlem4 10556 gchpwdom 10564 gchaleph 10565 gchhar 10573 omina 10585 gchina 10593 tskpr 10664 rexpen 16137 odinf 19442 fctop2 22890 dis1stc 23384 iunmbl2 25456 dyadmbl 25499 f1ocnt 32745 sibfof 34308 pibt2 37391 mblfinlem1 37637 ovoliunnfl 37642 heiborlem3 37793 ctbnfien 42791 pellex 42808 numinfctb 43076 saluncl 46298 meadjun 46443 meaiunlelem 46449 omeunle 46497 |
| Copyright terms: Public domain | W3C validator |