| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfinite | Structured version Visualization version GIF version | ||
| Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. The Axiom of Infinity is used for the forward implication. (Contributed by FL, 16-Apr-2011.) |
| Ref | Expression |
|---|---|
| isfinite | ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9533 | . 2 ⊢ ω ∈ V | |
| 2 | isfiniteg 9184 | . 2 ⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 ωcom 7796 ≺ csdm 8868 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 |
| This theorem is referenced by: fict 9543 infxpenlem 9904 pwsdompw 10094 cflim2 10154 axcc4dom 10332 domtriom 10334 fin41 10335 dominf 10336 infinf 10457 dominfac 10464 canthp1lem2 10544 pwfseqlem3 10551 pwfseqlem4a 10552 pwfseqlem4 10553 gchpwdom 10561 gchaleph 10562 gchhar 10570 omina 10582 gchina 10590 tskpr 10661 rexpen 16137 odinf 19475 fctop2 22920 dis1stc 23414 iunmbl2 25485 dyadmbl 25528 f1ocnt 32782 sibfof 34353 pibt2 37459 mblfinlem1 37705 ovoliunnfl 37710 heiborlem3 37861 ctbnfien 42859 pellex 42876 numinfctb 43144 saluncl 46363 meadjun 46508 meaiunlelem 46514 omeunle 46562 |
| Copyright terms: Public domain | W3C validator |