MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite Structured version   Visualization version   GIF version

Theorem isfinite 9692
Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. The Axiom of Infinity is used for the forward implication. (Contributed by FL, 16-Apr-2011.)
Assertion
Ref Expression
isfinite (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)

Proof of Theorem isfinite
StepHypRef Expression
1 omex 9683 . 2 ω ∈ V
2 isfiniteg 9337 . 2 (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω))
31, 2ax-mp 5 1 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Vcvv 3480   class class class wbr 5143  ωcom 7887  csdm 8984  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989
This theorem is referenced by:  fict  9693  infxpenlem  10053  pwsdompw  10243  cflim2  10303  axcc4dom  10481  domtriom  10483  fin41  10484  dominf  10485  infinf  10606  dominfac  10613  canthp1lem2  10693  pwfseqlem3  10700  pwfseqlem4a  10701  pwfseqlem4  10702  gchpwdom  10710  gchaleph  10711  gchhar  10719  omina  10731  gchina  10739  tskpr  10810  rexpen  16264  odinf  19581  fctop2  23012  dis1stc  23507  iunmbl2  25592  dyadmbl  25635  f1ocnt  32804  sibfof  34342  pibt2  37418  mblfinlem1  37664  ovoliunnfl  37669  heiborlem3  37820  ctbnfien  42829  pellex  42846  numinfctb  43115  saluncl  46332  meadjun  46477  meaiunlelem  46483  omeunle  46531
  Copyright terms: Public domain W3C validator