| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfinite | Structured version Visualization version GIF version | ||
| Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. The Axiom of Infinity is used for the forward implication. (Contributed by FL, 16-Apr-2011.) |
| Ref | Expression |
|---|---|
| isfinite | ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9662 | . 2 ⊢ ω ∈ V | |
| 2 | isfiniteg 9314 | . 2 ⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 ωcom 7866 ≺ csdm 8963 Fincfn 8964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 |
| This theorem is referenced by: fict 9672 infxpenlem 10032 pwsdompw 10222 cflim2 10282 axcc4dom 10460 domtriom 10462 fin41 10463 dominf 10464 infinf 10585 dominfac 10592 canthp1lem2 10672 pwfseqlem3 10679 pwfseqlem4a 10680 pwfseqlem4 10681 gchpwdom 10689 gchaleph 10690 gchhar 10698 omina 10710 gchina 10718 tskpr 10789 rexpen 16251 odinf 19549 fctop2 22948 dis1stc 23442 iunmbl2 25515 dyadmbl 25558 f1ocnt 32784 sibfof 34377 pibt2 37440 mblfinlem1 37686 ovoliunnfl 37691 heiborlem3 37842 ctbnfien 42808 pellex 42825 numinfctb 43094 saluncl 46313 meadjun 46458 meaiunlelem 46464 omeunle 46512 |
| Copyright terms: Public domain | W3C validator |