MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfi Structured version   Visualization version   GIF version

Theorem isfi 8947
Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
isfi (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fin 8922 . . 3 Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥}
21eleq2i 2820 . 2 (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥})
3 relen 8923 . . . . 5 Rel ≈
43brrelex1i 5694 . . . 4 (𝐴𝑥𝐴 ∈ V)
54rexlimivw 3130 . . 3 (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ V)
6 breq1 5110 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
76rexbidv 3157 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦𝑥 ↔ ∃𝑥 ∈ ω 𝐴𝑥))
85, 7elab3 3653 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥} ↔ ∃𝑥 ∈ ω 𝐴𝑥)
92, 8bitri 275 1 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447   class class class wbr 5107  ωcom 7842  cen 8915  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-en 8919  df-fin 8922
This theorem is referenced by:  0fi  9013  snfi  9014  snfiOLD  9015  findcard  9127  findcard2  9128  nnfi  9131  ssnnfi  9133  unfi  9135  ssfiALT  9138  enfii  9150  enfiALT  9152  php3  9173  onfin  9179  ominf  9205  ominfOLD  9206  isinf  9207  isinfOLD  9208  dif1ennnALT  9222  findcard3  9229  findcard3OLD  9230  nnsdomg  9246  nnsdomgOLD  9247  isfiniteg  9248  prfi  9274  fiint  9277  fiintOLD  9278  finnum  9901  ficardom  9914  dif1card  9963  infpwfien  10015  ficard  10518  hashkf  14297  finminlem  36306  domalom  37392
  Copyright terms: Public domain W3C validator