| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfi | Structured version Visualization version GIF version | ||
| Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
| Ref | Expression |
|---|---|
| isfi | ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin 8868 | . . 3 ⊢ Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥}) |
| 3 | relen 8869 | . . . . 5 ⊢ Rel ≈ | |
| 4 | 3 | brrelex1i 5667 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
| 5 | 4 | rexlimivw 3129 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
| 6 | breq1 5089 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝐴 ≈ 𝑥)) | |
| 7 | 6 | rexbidv 3156 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥)) |
| 8 | 5, 7 | elab3 3637 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 9 | 2, 8 | bitri 275 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 class class class wbr 5086 ωcom 7791 ≈ cen 8861 Fincfn 8864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-en 8865 df-fin 8868 |
| This theorem is referenced by: 0fi 8959 snfi 8960 findcard 9068 findcard2 9069 nnfi 9072 ssnnfi 9074 unfi 9075 ssfiALT 9078 enfii 9090 enfiALT 9092 php3 9113 onfin 9119 ominf 9143 isinf 9144 dif1ennnALT 9156 findcard3 9162 nnsdomg 9178 isfiniteg 9179 prfi 9203 fiint 9206 finnum 9836 ficardom 9849 dif1card 9896 infpwfien 9948 ficard 10451 hashkf 14234 finminlem 36352 domalom 37438 |
| Copyright terms: Public domain | W3C validator |