MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfi Structured version   Visualization version   GIF version

Theorem isfi 9036
Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
isfi (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fin 9007 . . 3 Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥}
21eleq2i 2836 . 2 (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥})
3 relen 9008 . . . . 5 Rel ≈
43brrelex1i 5756 . . . 4 (𝐴𝑥𝐴 ∈ V)
54rexlimivw 3157 . . 3 (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ V)
6 breq1 5169 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
76rexbidv 3185 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦𝑥 ↔ ∃𝑥 ∈ ω 𝐴𝑥))
85, 7elab3 3702 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥} ↔ ∃𝑥 ∈ ω 𝐴𝑥)
92, 8bitri 275 1 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488   class class class wbr 5166  ωcom 7903  cen 9000  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-en 9004  df-fin 9007
This theorem is referenced by:  0fi  9108  snfi  9109  snfiOLD  9110  findcard  9229  findcard2  9230  nnfi  9233  ssnnfi  9235  ssnnfiOLD  9236  unfi  9238  ssfiALT  9241  enfii  9252  enfiALT  9254  php3  9275  php3OLD  9287  onfin  9293  ominf  9321  ominfOLD  9322  isinf  9323  isinfOLD  9324  dif1ennnALT  9339  findcard3  9346  findcard3OLD  9347  nnsdomg  9363  nnsdomgOLD  9364  isfiniteg  9365  prfi  9391  fiint  9394  fiintOLD  9395  pwfiOLD  9417  finnum  10017  ficardom  10030  dif1card  10079  infpwfien  10131  ficard  10634  hashkf  14381  finminlem  36284  domalom  37370
  Copyright terms: Public domain W3C validator