| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfi | Structured version Visualization version GIF version | ||
| Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
| Ref | Expression |
|---|---|
| isfi | ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin 8961 | . . 3 ⊢ Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} | |
| 2 | 1 | eleq2i 2826 | . 2 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥}) |
| 3 | relen 8962 | . . . . 5 ⊢ Rel ≈ | |
| 4 | 3 | brrelex1i 5710 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
| 5 | 4 | rexlimivw 3137 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
| 6 | breq1 5122 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝐴 ≈ 𝑥)) | |
| 7 | 6 | rexbidv 3164 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥)) |
| 8 | 5, 7 | elab3 3665 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 9 | 2, 8 | bitri 275 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 Vcvv 3459 class class class wbr 5119 ωcom 7859 ≈ cen 8954 Fincfn 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-en 8958 df-fin 8961 |
| This theorem is referenced by: 0fi 9054 snfi 9055 snfiOLD 9056 findcard 9175 findcard2 9176 nnfi 9179 ssnnfi 9181 unfi 9183 ssfiALT 9186 enfii 9198 enfiALT 9200 php3 9221 php3OLD 9231 onfin 9237 ominf 9264 ominfOLD 9265 isinf 9266 isinfOLD 9267 dif1ennnALT 9281 findcard3 9288 findcard3OLD 9289 nnsdomg 9305 nnsdomgOLD 9306 isfiniteg 9307 prfi 9333 fiint 9336 fiintOLD 9337 finnum 9960 ficardom 9973 dif1card 10022 infpwfien 10074 ficard 10577 hashkf 14348 finminlem 36282 domalom 37368 |
| Copyright terms: Public domain | W3C validator |