![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfi | Structured version Visualization version GIF version |
Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
isfi | ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin 9007 | . . 3 ⊢ Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥}) |
3 | relen 9008 | . . . . 5 ⊢ Rel ≈ | |
4 | 3 | brrelex1i 5756 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
5 | 4 | rexlimivw 3157 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
6 | breq1 5169 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝐴 ≈ 𝑥)) | |
7 | 6 | rexbidv 3185 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥)) |
8 | 5, 7 | elab3 3702 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
9 | 2, 8 | bitri 275 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 class class class wbr 5166 ωcom 7903 ≈ cen 9000 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-en 9004 df-fin 9007 |
This theorem is referenced by: 0fi 9108 snfi 9109 snfiOLD 9110 findcard 9229 findcard2 9230 nnfi 9233 ssnnfi 9235 ssnnfiOLD 9236 unfi 9238 ssfiALT 9241 enfii 9252 enfiALT 9254 php3 9275 php3OLD 9287 onfin 9293 ominf 9321 ominfOLD 9322 isinf 9323 isinfOLD 9324 dif1ennnALT 9339 findcard3 9346 findcard3OLD 9347 nnsdomg 9363 nnsdomgOLD 9364 isfiniteg 9365 prfi 9391 fiint 9394 fiintOLD 9395 pwfiOLD 9417 finnum 10017 ficardom 10030 dif1card 10079 infpwfien 10131 ficard 10634 hashkf 14381 finminlem 36284 domalom 37370 |
Copyright terms: Public domain | W3C validator |