MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfi Structured version   Visualization version   GIF version

Theorem isfi 8924
Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
isfi (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fin 8899 . . 3 Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥}
21eleq2i 2820 . 2 (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥})
3 relen 8900 . . . . 5 Rel ≈
43brrelex1i 5687 . . . 4 (𝐴𝑥𝐴 ∈ V)
54rexlimivw 3130 . . 3 (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ V)
6 breq1 5105 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
76rexbidv 3157 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦𝑥 ↔ ∃𝑥 ∈ ω 𝐴𝑥))
85, 7elab3 3650 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥} ↔ ∃𝑥 ∈ ω 𝐴𝑥)
92, 8bitri 275 1 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3444   class class class wbr 5102  ωcom 7822  cen 8892  Fincfn 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-en 8896  df-fin 8899
This theorem is referenced by:  0fi  8990  snfi  8991  snfiOLD  8992  findcard  9104  findcard2  9105  nnfi  9108  ssnnfi  9110  unfi  9112  ssfiALT  9115  enfii  9127  enfiALT  9129  php3  9150  onfin  9156  ominf  9181  ominfOLD  9182  isinf  9183  isinfOLD  9184  dif1ennnALT  9198  findcard3  9205  findcard3OLD  9206  nnsdomg  9222  nnsdomgOLD  9223  isfiniteg  9224  prfi  9250  fiint  9253  fiintOLD  9254  finnum  9877  ficardom  9890  dif1card  9939  infpwfien  9991  ficard  10494  hashkf  14273  finminlem  36279  domalom  37365
  Copyright terms: Public domain W3C validator