MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfi Structured version   Visualization version   GIF version

Theorem isfi 8719
Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
isfi (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fin 8695 . . 3 Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥}
21eleq2i 2830 . 2 (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥})
3 relen 8696 . . . . 5 Rel ≈
43brrelex1i 5634 . . . 4 (𝐴𝑥𝐴 ∈ V)
54rexlimivw 3210 . . 3 (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ V)
6 breq1 5073 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
76rexbidv 3225 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦𝑥 ↔ ∃𝑥 ∈ ω 𝐴𝑥))
85, 7elab3 3610 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥} ↔ ∃𝑥 ∈ ω 𝐴𝑥)
92, 8bitri 274 1 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  Vcvv 3422   class class class wbr 5070  ωcom 7687  cen 8688  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-en 8692  df-fin 8695
This theorem is referenced by:  snfi  8788  php3  8899  findcard  8908  findcard2  8909  nnfi  8912  ssnnfi  8914  ssnnfiOLD  8915  unfi  8917  ssfiALT  8919  enfii  8932  enfiALT  8934  onfin  8944  ominf  8964  isinf  8965  dif1enALT  8980  findcard2OLD  8986  findcard3  8987  nnsdomg  9003  isfiniteg  9004  unfiOLD  9011  fiint  9021  pwfiOLD  9044  finnum  9637  ficardom  9650  dif1card  9697  infpwfien  9749  ficard  10252  hashkf  13974  finminlem  34434  domalom  35502
  Copyright terms: Public domain W3C validator