| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfi | Structured version Visualization version GIF version | ||
| Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
| Ref | Expression |
|---|---|
| isfi | ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin 8876 | . . 3 ⊢ Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥}) |
| 3 | relen 8877 | . . . . 5 ⊢ Rel ≈ | |
| 4 | 3 | brrelex1i 5675 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
| 5 | 4 | rexlimivw 3126 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
| 6 | breq1 5095 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝐴 ≈ 𝑥)) | |
| 7 | 6 | rexbidv 3153 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥)) |
| 8 | 5, 7 | elab3 3642 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 9 | 2, 8 | bitri 275 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3436 class class class wbr 5092 ωcom 7799 ≈ cen 8869 Fincfn 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-en 8873 df-fin 8876 |
| This theorem is referenced by: 0fi 8967 snfi 8968 snfiOLD 8969 findcard 9077 findcard2 9078 nnfi 9081 ssnnfi 9083 unfi 9085 ssfiALT 9088 enfii 9100 enfiALT 9102 php3 9123 onfin 9129 ominf 9153 isinf 9154 dif1ennnALT 9166 findcard3 9172 nnsdomg 9188 isfiniteg 9189 prfi 9213 fiint 9216 fiintOLD 9217 finnum 9844 ficardom 9857 dif1card 9904 infpwfien 9956 ficard 10459 hashkf 14239 finminlem 36292 domalom 37378 |
| Copyright terms: Public domain | W3C validator |