Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfi | Structured version Visualization version GIF version |
Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
isfi | ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin 8695 | . . 3 ⊢ Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥}) |
3 | relen 8696 | . . . . 5 ⊢ Rel ≈ | |
4 | 3 | brrelex1i 5634 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
5 | 4 | rexlimivw 3210 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
6 | breq1 5073 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝐴 ≈ 𝑥)) | |
7 | 6 | rexbidv 3225 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥)) |
8 | 5, 7 | elab3 3610 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
9 | 2, 8 | bitri 274 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 Vcvv 3422 class class class wbr 5070 ωcom 7687 ≈ cen 8688 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-en 8692 df-fin 8695 |
This theorem is referenced by: snfi 8788 php3 8899 findcard 8908 findcard2 8909 nnfi 8912 ssnnfi 8914 ssnnfiOLD 8915 unfi 8917 ssfiALT 8919 enfii 8932 enfiALT 8934 onfin 8944 ominf 8964 isinf 8965 dif1enALT 8980 findcard2OLD 8986 findcard3 8987 nnsdomg 9003 isfiniteg 9004 unfiOLD 9011 fiint 9021 pwfiOLD 9044 finnum 9637 ficardom 9650 dif1card 9697 infpwfien 9749 ficard 10252 hashkf 13974 finminlem 34434 domalom 35502 |
Copyright terms: Public domain | W3C validator |