Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fixssdm Structured version   Visualization version   GIF version

Theorem fixssdm 35900
Description: The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fixssdm Fix 𝐴 ⊆ dom 𝐴

Proof of Theorem fixssdm
StepHypRef Expression
1 df-fix 35853 . 2 Fix 𝐴 = dom (𝐴 ∩ I )
2 inss1 4246 . . 3 (𝐴 ∩ I ) ⊆ 𝐴
3 dmss 5917 . . 3 ((𝐴 ∩ I ) ⊆ 𝐴 → dom (𝐴 ∩ I ) ⊆ dom 𝐴)
42, 3ax-mp 5 . 2 dom (𝐴 ∩ I ) ⊆ dom 𝐴
51, 4eqsstri 4031 1 Fix 𝐴 ⊆ dom 𝐴
Colors of variables: wff setvar class
Syntax hints:  cin 3963  wss 3964   I cid 5583  dom cdm 5690   Fix cfix 35829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5150  df-dm 5700  df-fix 35853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator