Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fixssdm Structured version   Visualization version   GIF version

Theorem fixssdm 35946
Description: The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fixssdm Fix 𝐴 ⊆ dom 𝐴

Proof of Theorem fixssdm
StepHypRef Expression
1 df-fix 35899 . 2 Fix 𝐴 = dom (𝐴 ∩ I )
2 inss1 4187 . . 3 (𝐴 ∩ I ) ⊆ 𝐴
3 dmss 5842 . . 3 ((𝐴 ∩ I ) ⊆ 𝐴 → dom (𝐴 ∩ I ) ⊆ dom 𝐴)
42, 3ax-mp 5 . 2 dom (𝐴 ∩ I ) ⊆ dom 𝐴
51, 4eqsstri 3981 1 Fix 𝐴 ⊆ dom 𝐴
Colors of variables: wff setvar class
Syntax hints:  cin 3901  wss 3902   I cid 5510  dom cdm 5616   Fix cfix 35875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-dm 5626  df-fix 35899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator