Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fixssdm Structured version   Visualization version   GIF version

Theorem fixssdm 35894
Description: The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fixssdm Fix 𝐴 ⊆ dom 𝐴

Proof of Theorem fixssdm
StepHypRef Expression
1 df-fix 35847 . 2 Fix 𝐴 = dom (𝐴 ∩ I )
2 inss1 4200 . . 3 (𝐴 ∩ I ) ⊆ 𝐴
3 dmss 5866 . . 3 ((𝐴 ∩ I ) ⊆ 𝐴 → dom (𝐴 ∩ I ) ⊆ dom 𝐴)
42, 3ax-mp 5 . 2 dom (𝐴 ∩ I ) ⊆ dom 𝐴
51, 4eqsstri 3993 1 Fix 𝐴 ⊆ dom 𝐴
Colors of variables: wff setvar class
Syntax hints:  cin 3913  wss 3914   I cid 5532  dom cdm 5638   Fix cfix 35823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-dm 5648  df-fix 35847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator