![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fixssdm | Structured version Visualization version GIF version |
Description: The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
fixssdm | ⊢ Fix 𝐴 ⊆ dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fix 35136 | . 2 ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) | |
2 | inss1 4228 | . . 3 ⊢ (𝐴 ∩ I ) ⊆ 𝐴 | |
3 | dmss 5902 | . . 3 ⊢ ((𝐴 ∩ I ) ⊆ 𝐴 → dom (𝐴 ∩ I ) ⊆ dom 𝐴) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ dom (𝐴 ∩ I ) ⊆ dom 𝐴 |
5 | 1, 4 | eqsstri 4016 | 1 ⊢ Fix 𝐴 ⊆ dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3947 ⊆ wss 3948 I cid 5573 dom cdm 5676 Fix cfix 35112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-dm 5686 df-fix 35136 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |