![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fixssdm | Structured version Visualization version GIF version |
Description: The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
fixssdm | ⊢ Fix 𝐴 ⊆ dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fix 35391 | . 2 ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) | |
2 | inss1 4224 | . . 3 ⊢ (𝐴 ∩ I ) ⊆ 𝐴 | |
3 | dmss 5899 | . . 3 ⊢ ((𝐴 ∩ I ) ⊆ 𝐴 → dom (𝐴 ∩ I ) ⊆ dom 𝐴) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ dom (𝐴 ∩ I ) ⊆ dom 𝐴 |
5 | 1, 4 | eqsstri 4012 | 1 ⊢ Fix 𝐴 ⊆ dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3943 ⊆ wss 3944 I cid 5569 dom cdm 5672 Fix cfix 35367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-dm 5682 df-fix 35391 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |