| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fixssdm | Structured version Visualization version GIF version | ||
| Description: The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| fixssdm | ⊢ Fix 𝐴 ⊆ dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fix 35794 | . 2 ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) | |
| 2 | inss1 4217 | . . 3 ⊢ (𝐴 ∩ I ) ⊆ 𝐴 | |
| 3 | dmss 5893 | . . 3 ⊢ ((𝐴 ∩ I ) ⊆ 𝐴 → dom (𝐴 ∩ I ) ⊆ dom 𝐴) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ dom (𝐴 ∩ I ) ⊆ dom 𝐴 |
| 5 | 1, 4 | eqsstri 4010 | 1 ⊢ Fix 𝐴 ⊆ dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3930 ⊆ wss 3931 I cid 5557 dom cdm 5665 Fix cfix 35770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-dm 5675 df-fix 35794 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |