Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fixssdm | Structured version Visualization version GIF version |
Description: The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
fixssdm | ⊢ Fix 𝐴 ⊆ dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fix 34088 | . 2 ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) | |
2 | inss1 4159 | . . 3 ⊢ (𝐴 ∩ I ) ⊆ 𝐴 | |
3 | dmss 5800 | . . 3 ⊢ ((𝐴 ∩ I ) ⊆ 𝐴 → dom (𝐴 ∩ I ) ⊆ dom 𝐴) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ dom (𝐴 ∩ I ) ⊆ dom 𝐴 |
5 | 1, 4 | eqsstri 3951 | 1 ⊢ Fix 𝐴 ⊆ dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3882 ⊆ wss 3883 I cid 5479 dom cdm 5580 Fix cfix 34064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-dm 5590 df-fix 34088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |