![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fixun | Structured version Visualization version GIF version |
Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
fixun | ⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4076 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∩ I ) = ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) | |
2 | 1 | dmeqi 5528 | . . 3 ⊢ dom ((𝐴 ∪ 𝐵) ∩ I ) = dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) |
3 | dmun 5534 | . . 3 ⊢ dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) | |
4 | 2, 3 | eqtri 2821 | . 2 ⊢ dom ((𝐴 ∪ 𝐵) ∩ I ) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) |
5 | df-fix 32479 | . 2 ⊢ Fix (𝐴 ∪ 𝐵) = dom ((𝐴 ∪ 𝐵) ∩ I ) | |
6 | df-fix 32479 | . . 3 ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) | |
7 | df-fix 32479 | . . 3 ⊢ Fix 𝐵 = dom (𝐵 ∩ I ) | |
8 | 6, 7 | uneq12i 3963 | . 2 ⊢ ( Fix 𝐴 ∪ Fix 𝐵) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) |
9 | 4, 5, 8 | 3eqtr4i 2831 | 1 ⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∪ cun 3767 ∩ cin 3768 I cid 5219 dom cdm 5312 Fix cfix 32455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-dm 5322 df-fix 32479 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |