Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fixun Structured version   Visualization version   GIF version

Theorem fixun 34219
Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fixun Fix (𝐴𝐵) = ( Fix 𝐴 Fix 𝐵)

Proof of Theorem fixun
StepHypRef Expression
1 indir 4209 . . . 4 ((𝐴𝐵) ∩ I ) = ((𝐴 ∩ I ) ∪ (𝐵 ∩ I ))
21dmeqi 5806 . . 3 dom ((𝐴𝐵) ∩ I ) = dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I ))
3 dmun 5812 . . 3 dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I ))
42, 3eqtri 2766 . 2 dom ((𝐴𝐵) ∩ I ) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I ))
5 df-fix 34169 . 2 Fix (𝐴𝐵) = dom ((𝐴𝐵) ∩ I )
6 df-fix 34169 . . 3 Fix 𝐴 = dom (𝐴 ∩ I )
7 df-fix 34169 . . 3 Fix 𝐵 = dom (𝐵 ∩ I )
86, 7uneq12i 4094 . 2 ( Fix 𝐴 Fix 𝐵) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I ))
94, 5, 83eqtr4i 2776 1 Fix (𝐴𝐵) = ( Fix 𝐴 Fix 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3884  cin 3885   I cid 5483  dom cdm 5584   Fix cfix 34145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5074  df-dm 5594  df-fix 34169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator