| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fixun | Structured version Visualization version GIF version | ||
| Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| fixun | ⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir 4266 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∩ I ) = ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) | |
| 2 | 1 | dmeqi 5895 | . . 3 ⊢ dom ((𝐴 ∪ 𝐵) ∩ I ) = dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) |
| 3 | dmun 5901 | . . 3 ⊢ dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) | |
| 4 | 2, 3 | eqtri 2757 | . 2 ⊢ dom ((𝐴 ∪ 𝐵) ∩ I ) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) |
| 5 | df-fix 35794 | . 2 ⊢ Fix (𝐴 ∪ 𝐵) = dom ((𝐴 ∪ 𝐵) ∩ I ) | |
| 6 | df-fix 35794 | . . 3 ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) | |
| 7 | df-fix 35794 | . . 3 ⊢ Fix 𝐵 = dom (𝐵 ∩ I ) | |
| 8 | 6, 7 | uneq12i 4146 | . 2 ⊢ ( Fix 𝐴 ∪ Fix 𝐵) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) |
| 9 | 4, 5, 8 | 3eqtr4i 2767 | 1 ⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∪ cun 3929 ∩ cin 3930 I cid 5557 dom cdm 5665 Fix cfix 35770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-dm 5675 df-fix 35794 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |