Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fixun | Structured version Visualization version GIF version |
Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
fixun | ⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4206 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∩ I ) = ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) | |
2 | 1 | dmeqi 5802 | . . 3 ⊢ dom ((𝐴 ∪ 𝐵) ∩ I ) = dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) |
3 | dmun 5808 | . . 3 ⊢ dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) | |
4 | 2, 3 | eqtri 2766 | . 2 ⊢ dom ((𝐴 ∪ 𝐵) ∩ I ) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) |
5 | df-fix 34088 | . 2 ⊢ Fix (𝐴 ∪ 𝐵) = dom ((𝐴 ∪ 𝐵) ∩ I ) | |
6 | df-fix 34088 | . . 3 ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) | |
7 | df-fix 34088 | . . 3 ⊢ Fix 𝐵 = dom (𝐵 ∩ I ) | |
8 | 6, 7 | uneq12i 4091 | . 2 ⊢ ( Fix 𝐴 ∪ Fix 𝐵) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) |
9 | 4, 5, 8 | 3eqtr4i 2776 | 1 ⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 ∩ cin 3882 I cid 5479 dom cdm 5580 Fix cfix 34064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-dm 5590 df-fix 34088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |