Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fixun Structured version   Visualization version   GIF version

Theorem fixun 35894
Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fixun Fix (𝐴𝐵) = ( Fix 𝐴 Fix 𝐵)

Proof of Theorem fixun
StepHypRef Expression
1 indir 4257 . . . 4 ((𝐴𝐵) ∩ I ) = ((𝐴 ∩ I ) ∪ (𝐵 ∩ I ))
21dmeqi 5876 . . 3 dom ((𝐴𝐵) ∩ I ) = dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I ))
3 dmun 5882 . . 3 dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I ))
42, 3eqtri 2753 . 2 dom ((𝐴𝐵) ∩ I ) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I ))
5 df-fix 35844 . 2 Fix (𝐴𝐵) = dom ((𝐴𝐵) ∩ I )
6 df-fix 35844 . . 3 Fix 𝐴 = dom (𝐴 ∩ I )
7 df-fix 35844 . . 3 Fix 𝐵 = dom (𝐵 ∩ I )
86, 7uneq12i 4137 . 2 ( Fix 𝐴 Fix 𝐵) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I ))
94, 5, 83eqtr4i 2763 1 Fix (𝐴𝐵) = ( Fix 𝐴 Fix 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3920  cin 3921   I cid 5540  dom cdm 5646   Fix cfix 35820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-dm 5656  df-fix 35844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator