Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fixun Structured version   Visualization version   GIF version

Theorem fixun 35844
Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fixun Fix (𝐴𝐵) = ( Fix 𝐴 Fix 𝐵)

Proof of Theorem fixun
StepHypRef Expression
1 indir 4266 . . . 4 ((𝐴𝐵) ∩ I ) = ((𝐴 ∩ I ) ∪ (𝐵 ∩ I ))
21dmeqi 5895 . . 3 dom ((𝐴𝐵) ∩ I ) = dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I ))
3 dmun 5901 . . 3 dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I ))
42, 3eqtri 2757 . 2 dom ((𝐴𝐵) ∩ I ) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I ))
5 df-fix 35794 . 2 Fix (𝐴𝐵) = dom ((𝐴𝐵) ∩ I )
6 df-fix 35794 . . 3 Fix 𝐴 = dom (𝐴 ∩ I )
7 df-fix 35794 . . 3 Fix 𝐵 = dom (𝐵 ∩ I )
86, 7uneq12i 4146 . 2 ( Fix 𝐴 Fix 𝐵) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I ))
94, 5, 83eqtr4i 2767 1 Fix (𝐴𝐵) = ( Fix 𝐴 Fix 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3929  cin 3930   I cid 5557  dom cdm 5665   Fix cfix 35770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-dm 5675  df-fix 35794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator