![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fixun | Structured version Visualization version GIF version |
Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
fixun | ⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4295 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∩ I ) = ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) | |
2 | 1 | dmeqi 5922 | . . 3 ⊢ dom ((𝐴 ∪ 𝐵) ∩ I ) = dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) |
3 | dmun 5928 | . . 3 ⊢ dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) | |
4 | 2, 3 | eqtri 2765 | . 2 ⊢ dom ((𝐴 ∪ 𝐵) ∩ I ) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) |
5 | df-fix 35854 | . 2 ⊢ Fix (𝐴 ∪ 𝐵) = dom ((𝐴 ∪ 𝐵) ∩ I ) | |
6 | df-fix 35854 | . . 3 ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) | |
7 | df-fix 35854 | . . 3 ⊢ Fix 𝐵 = dom (𝐵 ∩ I ) | |
8 | 6, 7 | uneq12i 4179 | . 2 ⊢ ( Fix 𝐴 ∪ Fix 𝐵) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) |
9 | 4, 5, 8 | 3eqtr4i 2775 | 1 ⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3964 ∩ cin 3965 I cid 5586 dom cdm 5693 Fix cfix 35830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-dm 5703 df-fix 35854 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |