Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fixun | Structured version Visualization version GIF version |
Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
fixun | ⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4209 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∩ I ) = ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) | |
2 | 1 | dmeqi 5813 | . . 3 ⊢ dom ((𝐴 ∪ 𝐵) ∩ I ) = dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) |
3 | dmun 5819 | . . 3 ⊢ dom ((𝐴 ∩ I ) ∪ (𝐵 ∩ I )) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) | |
4 | 2, 3 | eqtri 2766 | . 2 ⊢ dom ((𝐴 ∪ 𝐵) ∩ I ) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) |
5 | df-fix 34161 | . 2 ⊢ Fix (𝐴 ∪ 𝐵) = dom ((𝐴 ∪ 𝐵) ∩ I ) | |
6 | df-fix 34161 | . . 3 ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) | |
7 | df-fix 34161 | . . 3 ⊢ Fix 𝐵 = dom (𝐵 ∩ I ) | |
8 | 6, 7 | uneq12i 4095 | . 2 ⊢ ( Fix 𝐴 ∪ Fix 𝐵) = (dom (𝐴 ∩ I ) ∪ dom (𝐵 ∩ I )) |
9 | 4, 5, 8 | 3eqtr4i 2776 | 1 ⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 ∩ cin 3886 I cid 5488 dom cdm 5589 Fix cfix 34137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-dm 5599 df-fix 34161 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |