Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfix Structured version   Visualization version   GIF version

Theorem elfix 34199
Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
elfix.1 𝐴 ∈ V
Assertion
Ref Expression
elfix (𝐴 Fix 𝑅𝐴𝑅𝐴)

Proof of Theorem elfix
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fix 34155 . . 3 Fix 𝑅 = dom (𝑅 ∩ I )
21eleq2i 2832 . 2 (𝐴 Fix 𝑅𝐴 ∈ dom (𝑅 ∩ I ))
3 elfix.1 . . . 4 𝐴 ∈ V
43eldm 5807 . . 3 (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥 𝐴(𝑅 ∩ I )𝑥)
5 brin 5131 . . . . 5 (𝐴(𝑅 ∩ I )𝑥 ↔ (𝐴𝑅𝑥𝐴 I 𝑥))
6 ancom 461 . . . . 5 ((𝐴𝑅𝑥𝐴 I 𝑥) ↔ (𝐴 I 𝑥𝐴𝑅𝑥))
7 vex 3435 . . . . . . . 8 𝑥 ∈ V
87ideq 5759 . . . . . . 7 (𝐴 I 𝑥𝐴 = 𝑥)
9 eqcom 2747 . . . . . . 7 (𝐴 = 𝑥𝑥 = 𝐴)
108, 9bitri 274 . . . . . 6 (𝐴 I 𝑥𝑥 = 𝐴)
1110anbi1i 624 . . . . 5 ((𝐴 I 𝑥𝐴𝑅𝑥) ↔ (𝑥 = 𝐴𝐴𝑅𝑥))
125, 6, 113bitri 297 . . . 4 (𝐴(𝑅 ∩ I )𝑥 ↔ (𝑥 = 𝐴𝐴𝑅𝑥))
1312exbii 1854 . . 3 (∃𝑥 𝐴(𝑅 ∩ I )𝑥 ↔ ∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥))
144, 13bitri 274 . 2 (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥))
15 breq2 5083 . . 3 (𝑥 = 𝐴 → (𝐴𝑅𝑥𝐴𝑅𝐴))
163, 15ceqsexv 3478 . 2 (∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥) ↔ 𝐴𝑅𝐴)
172, 14, 163bitri 297 1 (𝐴 Fix 𝑅𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  wex 1786  wcel 2110  Vcvv 3431  cin 3891   class class class wbr 5079   I cid 5488  dom cdm 5589   Fix cfix 34131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-id 5489  df-xp 5595  df-rel 5596  df-dm 5599  df-fix 34155
This theorem is referenced by:  elfix2  34200  dffix2  34201  fixcnv  34204  ellimits  34206  elfuns  34211  dfrecs2  34246  dfrdg4  34247
  Copyright terms: Public domain W3C validator