Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfix Structured version   Visualization version   GIF version

Theorem elfix 35435
Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
elfix.1 𝐴 ∈ V
Assertion
Ref Expression
elfix (𝐴 Fix 𝑅𝐴𝑅𝐴)

Proof of Theorem elfix
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fix 35391 . . 3 Fix 𝑅 = dom (𝑅 ∩ I )
21eleq2i 2820 . 2 (𝐴 Fix 𝑅𝐴 ∈ dom (𝑅 ∩ I ))
3 elfix.1 . . . 4 𝐴 ∈ V
43eldm 5897 . . 3 (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥 𝐴(𝑅 ∩ I )𝑥)
5 brin 5194 . . . . 5 (𝐴(𝑅 ∩ I )𝑥 ↔ (𝐴𝑅𝑥𝐴 I 𝑥))
6 ancom 460 . . . . 5 ((𝐴𝑅𝑥𝐴 I 𝑥) ↔ (𝐴 I 𝑥𝐴𝑅𝑥))
7 vex 3473 . . . . . . . 8 𝑥 ∈ V
87ideq 5849 . . . . . . 7 (𝐴 I 𝑥𝐴 = 𝑥)
9 eqcom 2734 . . . . . . 7 (𝐴 = 𝑥𝑥 = 𝐴)
108, 9bitri 275 . . . . . 6 (𝐴 I 𝑥𝑥 = 𝐴)
1110anbi1i 623 . . . . 5 ((𝐴 I 𝑥𝐴𝑅𝑥) ↔ (𝑥 = 𝐴𝐴𝑅𝑥))
125, 6, 113bitri 297 . . . 4 (𝐴(𝑅 ∩ I )𝑥 ↔ (𝑥 = 𝐴𝐴𝑅𝑥))
1312exbii 1843 . . 3 (∃𝑥 𝐴(𝑅 ∩ I )𝑥 ↔ ∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥))
144, 13bitri 275 . 2 (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥))
15 breq2 5146 . . 3 (𝑥 = 𝐴 → (𝐴𝑅𝑥𝐴𝑅𝐴))
163, 15ceqsexv 3521 . 2 (∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥) ↔ 𝐴𝑅𝐴)
172, 14, 163bitri 297 1 (𝐴 Fix 𝑅𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  Vcvv 3469  cin 3943   class class class wbr 5142   I cid 5569  dom cdm 5672   Fix cfix 35367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-dm 5682  df-fix 35391
This theorem is referenced by:  elfix2  35436  dffix2  35437  fixcnv  35440  ellimits  35442  elfuns  35447  dfrecs2  35482  dfrdg4  35483
  Copyright terms: Public domain W3C validator