![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfix | Structured version Visualization version GIF version |
Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
elfix.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elfix | ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fix 35135 | . . 3 ⊢ Fix 𝑅 = dom (𝑅 ∩ I ) | |
2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴 ∈ dom (𝑅 ∩ I )) |
3 | elfix.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | 3 | eldm 5899 | . . 3 ⊢ (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥 𝐴(𝑅 ∩ I )𝑥) |
5 | brin 5199 | . . . . 5 ⊢ (𝐴(𝑅 ∩ I )𝑥 ↔ (𝐴𝑅𝑥 ∧ 𝐴 I 𝑥)) | |
6 | ancom 459 | . . . . 5 ⊢ ((𝐴𝑅𝑥 ∧ 𝐴 I 𝑥) ↔ (𝐴 I 𝑥 ∧ 𝐴𝑅𝑥)) | |
7 | vex 3476 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
8 | 7 | ideq 5851 | . . . . . . 7 ⊢ (𝐴 I 𝑥 ↔ 𝐴 = 𝑥) |
9 | eqcom 2737 | . . . . . . 7 ⊢ (𝐴 = 𝑥 ↔ 𝑥 = 𝐴) | |
10 | 8, 9 | bitri 274 | . . . . . 6 ⊢ (𝐴 I 𝑥 ↔ 𝑥 = 𝐴) |
11 | 10 | anbi1i 622 | . . . . 5 ⊢ ((𝐴 I 𝑥 ∧ 𝐴𝑅𝑥) ↔ (𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
12 | 5, 6, 11 | 3bitri 296 | . . . 4 ⊢ (𝐴(𝑅 ∩ I )𝑥 ↔ (𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
13 | 12 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝐴(𝑅 ∩ I )𝑥 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
14 | 4, 13 | bitri 274 | . 2 ⊢ (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
15 | breq2 5151 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐴)) | |
16 | 3, 15 | ceqsexv 3524 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝐴𝑅𝑥) ↔ 𝐴𝑅𝐴) |
17 | 2, 14, 16 | 3bitri 296 | 1 ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 Vcvv 3472 ∩ cin 3946 class class class wbr 5147 I cid 5572 dom cdm 5675 Fix cfix 35111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-dm 5685 df-fix 35135 |
This theorem is referenced by: elfix2 35180 dffix2 35181 fixcnv 35184 ellimits 35186 elfuns 35191 dfrecs2 35226 dfrdg4 35227 |
Copyright terms: Public domain | W3C validator |