| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfix | Structured version Visualization version GIF version | ||
| Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| elfix.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elfix | ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fix 35854 | . . 3 ⊢ Fix 𝑅 = dom (𝑅 ∩ I ) | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴 ∈ dom (𝑅 ∩ I )) |
| 3 | elfix.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | 3 | eldm 5867 | . . 3 ⊢ (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥 𝐴(𝑅 ∩ I )𝑥) |
| 5 | brin 5162 | . . . . 5 ⊢ (𝐴(𝑅 ∩ I )𝑥 ↔ (𝐴𝑅𝑥 ∧ 𝐴 I 𝑥)) | |
| 6 | ancom 460 | . . . . 5 ⊢ ((𝐴𝑅𝑥 ∧ 𝐴 I 𝑥) ↔ (𝐴 I 𝑥 ∧ 𝐴𝑅𝑥)) | |
| 7 | vex 3454 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 8 | 7 | ideq 5819 | . . . . . . 7 ⊢ (𝐴 I 𝑥 ↔ 𝐴 = 𝑥) |
| 9 | eqcom 2737 | . . . . . . 7 ⊢ (𝐴 = 𝑥 ↔ 𝑥 = 𝐴) | |
| 10 | 8, 9 | bitri 275 | . . . . . 6 ⊢ (𝐴 I 𝑥 ↔ 𝑥 = 𝐴) |
| 11 | 10 | anbi1i 624 | . . . . 5 ⊢ ((𝐴 I 𝑥 ∧ 𝐴𝑅𝑥) ↔ (𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
| 12 | 5, 6, 11 | 3bitri 297 | . . . 4 ⊢ (𝐴(𝑅 ∩ I )𝑥 ↔ (𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
| 13 | 12 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝐴(𝑅 ∩ I )𝑥 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
| 14 | 4, 13 | bitri 275 | . 2 ⊢ (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
| 15 | breq2 5114 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐴)) | |
| 16 | 3, 15 | ceqsexv 3501 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝐴𝑅𝑥) ↔ 𝐴𝑅𝐴) |
| 17 | 2, 14, 16 | 3bitri 297 | 1 ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 class class class wbr 5110 I cid 5535 dom cdm 5641 Fix cfix 35830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-dm 5651 df-fix 35854 |
| This theorem is referenced by: elfix2 35899 dffix2 35900 fixcnv 35903 ellimits 35905 elfuns 35910 dfrecs2 35945 dfrdg4 35946 |
| Copyright terms: Public domain | W3C validator |