Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfix Structured version   Visualization version   GIF version

Theorem elfix 35179
Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
elfix.1 𝐴 ∈ V
Assertion
Ref Expression
elfix (𝐴 Fix 𝑅𝐴𝑅𝐴)

Proof of Theorem elfix
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fix 35135 . . 3 Fix 𝑅 = dom (𝑅 ∩ I )
21eleq2i 2823 . 2 (𝐴 Fix 𝑅𝐴 ∈ dom (𝑅 ∩ I ))
3 elfix.1 . . . 4 𝐴 ∈ V
43eldm 5899 . . 3 (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥 𝐴(𝑅 ∩ I )𝑥)
5 brin 5199 . . . . 5 (𝐴(𝑅 ∩ I )𝑥 ↔ (𝐴𝑅𝑥𝐴 I 𝑥))
6 ancom 459 . . . . 5 ((𝐴𝑅𝑥𝐴 I 𝑥) ↔ (𝐴 I 𝑥𝐴𝑅𝑥))
7 vex 3476 . . . . . . . 8 𝑥 ∈ V
87ideq 5851 . . . . . . 7 (𝐴 I 𝑥𝐴 = 𝑥)
9 eqcom 2737 . . . . . . 7 (𝐴 = 𝑥𝑥 = 𝐴)
108, 9bitri 274 . . . . . 6 (𝐴 I 𝑥𝑥 = 𝐴)
1110anbi1i 622 . . . . 5 ((𝐴 I 𝑥𝐴𝑅𝑥) ↔ (𝑥 = 𝐴𝐴𝑅𝑥))
125, 6, 113bitri 296 . . . 4 (𝐴(𝑅 ∩ I )𝑥 ↔ (𝑥 = 𝐴𝐴𝑅𝑥))
1312exbii 1848 . . 3 (∃𝑥 𝐴(𝑅 ∩ I )𝑥 ↔ ∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥))
144, 13bitri 274 . 2 (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥))
15 breq2 5151 . . 3 (𝑥 = 𝐴 → (𝐴𝑅𝑥𝐴𝑅𝐴))
163, 15ceqsexv 3524 . 2 (∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥) ↔ 𝐴𝑅𝐴)
172, 14, 163bitri 296 1 (𝐴 Fix 𝑅𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1539  wex 1779  wcel 2104  Vcvv 3472  cin 3946   class class class wbr 5147   I cid 5572  dom cdm 5675   Fix cfix 35111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-dm 5685  df-fix 35135
This theorem is referenced by:  elfix2  35180  dffix2  35181  fixcnv  35184  ellimits  35186  elfuns  35191  dfrecs2  35226  dfrdg4  35227
  Copyright terms: Public domain W3C validator