| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfix | Structured version Visualization version GIF version | ||
| Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| elfix.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elfix | ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fix 35832 | . . 3 ⊢ Fix 𝑅 = dom (𝑅 ∩ I ) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴 ∈ dom (𝑅 ∩ I )) |
| 3 | elfix.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | 3 | eldm 5847 | . . 3 ⊢ (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥 𝐴(𝑅 ∩ I )𝑥) |
| 5 | brin 5147 | . . . . 5 ⊢ (𝐴(𝑅 ∩ I )𝑥 ↔ (𝐴𝑅𝑥 ∧ 𝐴 I 𝑥)) | |
| 6 | ancom 460 | . . . . 5 ⊢ ((𝐴𝑅𝑥 ∧ 𝐴 I 𝑥) ↔ (𝐴 I 𝑥 ∧ 𝐴𝑅𝑥)) | |
| 7 | vex 3442 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 8 | 7 | ideq 5799 | . . . . . . 7 ⊢ (𝐴 I 𝑥 ↔ 𝐴 = 𝑥) |
| 9 | eqcom 2736 | . . . . . . 7 ⊢ (𝐴 = 𝑥 ↔ 𝑥 = 𝐴) | |
| 10 | 8, 9 | bitri 275 | . . . . . 6 ⊢ (𝐴 I 𝑥 ↔ 𝑥 = 𝐴) |
| 11 | 10 | anbi1i 624 | . . . . 5 ⊢ ((𝐴 I 𝑥 ∧ 𝐴𝑅𝑥) ↔ (𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
| 12 | 5, 6, 11 | 3bitri 297 | . . . 4 ⊢ (𝐴(𝑅 ∩ I )𝑥 ↔ (𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
| 13 | 12 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝐴(𝑅 ∩ I )𝑥 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
| 14 | 4, 13 | bitri 275 | . 2 ⊢ (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝐴𝑅𝑥)) |
| 15 | breq2 5099 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐴)) | |
| 16 | 3, 15 | ceqsexv 3489 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝐴𝑅𝑥) ↔ 𝐴𝑅𝐴) |
| 17 | 2, 14, 16 | 3bitri 297 | 1 ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 class class class wbr 5095 I cid 5517 dom cdm 5623 Fix cfix 35808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-dm 5633 df-fix 35832 |
| This theorem is referenced by: elfix2 35877 dffix2 35878 fixcnv 35881 ellimits 35883 elfuns 35888 dfrecs2 35923 dfrdg4 35924 |
| Copyright terms: Public domain | W3C validator |