Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfix Structured version   Visualization version   GIF version

Theorem elfix 35898
Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
elfix.1 𝐴 ∈ V
Assertion
Ref Expression
elfix (𝐴 Fix 𝑅𝐴𝑅𝐴)

Proof of Theorem elfix
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fix 35854 . . 3 Fix 𝑅 = dom (𝑅 ∩ I )
21eleq2i 2821 . 2 (𝐴 Fix 𝑅𝐴 ∈ dom (𝑅 ∩ I ))
3 elfix.1 . . . 4 𝐴 ∈ V
43eldm 5867 . . 3 (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥 𝐴(𝑅 ∩ I )𝑥)
5 brin 5162 . . . . 5 (𝐴(𝑅 ∩ I )𝑥 ↔ (𝐴𝑅𝑥𝐴 I 𝑥))
6 ancom 460 . . . . 5 ((𝐴𝑅𝑥𝐴 I 𝑥) ↔ (𝐴 I 𝑥𝐴𝑅𝑥))
7 vex 3454 . . . . . . . 8 𝑥 ∈ V
87ideq 5819 . . . . . . 7 (𝐴 I 𝑥𝐴 = 𝑥)
9 eqcom 2737 . . . . . . 7 (𝐴 = 𝑥𝑥 = 𝐴)
108, 9bitri 275 . . . . . 6 (𝐴 I 𝑥𝑥 = 𝐴)
1110anbi1i 624 . . . . 5 ((𝐴 I 𝑥𝐴𝑅𝑥) ↔ (𝑥 = 𝐴𝐴𝑅𝑥))
125, 6, 113bitri 297 . . . 4 (𝐴(𝑅 ∩ I )𝑥 ↔ (𝑥 = 𝐴𝐴𝑅𝑥))
1312exbii 1848 . . 3 (∃𝑥 𝐴(𝑅 ∩ I )𝑥 ↔ ∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥))
144, 13bitri 275 . 2 (𝐴 ∈ dom (𝑅 ∩ I ) ↔ ∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥))
15 breq2 5114 . . 3 (𝑥 = 𝐴 → (𝐴𝑅𝑥𝐴𝑅𝐴))
163, 15ceqsexv 3501 . 2 (∃𝑥(𝑥 = 𝐴𝐴𝑅𝑥) ↔ 𝐴𝑅𝐴)
172, 14, 163bitri 297 1 (𝐴 Fix 𝑅𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cin 3916   class class class wbr 5110   I cid 5535  dom cdm 5641   Fix cfix 35830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-dm 5651  df-fix 35854
This theorem is referenced by:  elfix2  35899  dffix2  35900  fixcnv  35903  ellimits  35905  elfuns  35910  dfrecs2  35945  dfrdg4  35946
  Copyright terms: Public domain W3C validator