Detailed syntax breakdown of Definition df-fth
| Step | Hyp | Ref
| Expression |
| 1 | | cfth 17918 |
. 2
class
Faith |
| 2 | | vc |
. . 3
setvar 𝑐 |
| 3 | | vd |
. . 3
setvar 𝑑 |
| 4 | | ccat 17676 |
. . 3
class
Cat |
| 5 | | vf |
. . . . . . 7
setvar 𝑓 |
| 6 | 5 | cv 1539 |
. . . . . 6
class 𝑓 |
| 7 | | vg |
. . . . . . 7
setvar 𝑔 |
| 8 | 7 | cv 1539 |
. . . . . 6
class 𝑔 |
| 9 | 2 | cv 1539 |
. . . . . . 7
class 𝑐 |
| 10 | 3 | cv 1539 |
. . . . . . 7
class 𝑑 |
| 11 | | cfunc 17867 |
. . . . . . 7
class
Func |
| 12 | 9, 10, 11 | co 7405 |
. . . . . 6
class (𝑐 Func 𝑑) |
| 13 | 6, 8, 12 | wbr 5119 |
. . . . 5
wff 𝑓(𝑐 Func 𝑑)𝑔 |
| 14 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 15 | 14 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 16 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 17 | 16 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 18 | 15, 17, 8 | co 7405 |
. . . . . . . . 9
class (𝑥𝑔𝑦) |
| 19 | 18 | ccnv 5653 |
. . . . . . . 8
class ◡(𝑥𝑔𝑦) |
| 20 | 19 | wfun 6525 |
. . . . . . 7
wff Fun ◡(𝑥𝑔𝑦) |
| 21 | | cbs 17228 |
. . . . . . . 8
class
Base |
| 22 | 9, 21 | cfv 6531 |
. . . . . . 7
class
(Base‘𝑐) |
| 23 | 20, 16, 22 | wral 3051 |
. . . . . 6
wff
∀𝑦 ∈
(Base‘𝑐)Fun ◡(𝑥𝑔𝑦) |
| 24 | 23, 14, 22 | wral 3051 |
. . . . 5
wff
∀𝑥 ∈
(Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun ◡(𝑥𝑔𝑦) |
| 25 | 13, 24 | wa 395 |
. . . 4
wff (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun ◡(𝑥𝑔𝑦)) |
| 26 | 25, 5, 7 | copab 5181 |
. . 3
class
{〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun ◡(𝑥𝑔𝑦))} |
| 27 | 2, 3, 4, 4, 26 | cmpo 7407 |
. 2
class (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun ◡(𝑥𝑔𝑦))}) |
| 28 | 1, 27 | wceq 1540 |
1
wff Faith =
(𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun ◡(𝑥𝑔𝑦))}) |