MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthfunc Structured version   Visualization version   GIF version

Theorem fthfunc 17236
Description: A faithful functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
fthfunc (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)

Proof of Theorem fthfunc
Dummy variables 𝑐 𝑑 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7157 . . . 4 (𝑐 = 𝐶 → (𝑐 Faith 𝑑) = (𝐶 Faith 𝑑))
2 oveq1 7157 . . . 4 (𝑐 = 𝐶 → (𝑐 Func 𝑑) = (𝐶 Func 𝑑))
31, 2sseq12d 3925 . . 3 (𝑐 = 𝐶 → ((𝑐 Faith 𝑑) ⊆ (𝑐 Func 𝑑) ↔ (𝐶 Faith 𝑑) ⊆ (𝐶 Func 𝑑)))
4 oveq2 7158 . . . 4 (𝑑 = 𝐷 → (𝐶 Faith 𝑑) = (𝐶 Faith 𝐷))
5 oveq2 7158 . . . 4 (𝑑 = 𝐷 → (𝐶 Func 𝑑) = (𝐶 Func 𝐷))
64, 5sseq12d 3925 . . 3 (𝑑 = 𝐷 → ((𝐶 Faith 𝑑) ⊆ (𝐶 Func 𝑑) ↔ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)))
7 ovex 7183 . . . . . 6 (𝑐 Func 𝑑) ∈ V
8 simpl 486 . . . . . . . 8 ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦)) → 𝑓(𝑐 Func 𝑑)𝑔)
98ssopab2i 5407 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ⊆ {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔}
10 opabss 5096 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔} ⊆ (𝑐 Func 𝑑)
119, 10sstri 3901 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ⊆ (𝑐 Func 𝑑)
127, 11ssexi 5192 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ∈ V
13 df-fth 17234 . . . . . 6 Faith = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1413ovmpt4g 7292 . . . . 5 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat ∧ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ∈ V) → (𝑐 Faith 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1512, 14mp3an3 1447 . . . 4 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Faith 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1615, 11eqsstrdi 3946 . . 3 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Faith 𝑑) ⊆ (𝑐 Func 𝑑))
173, 6, 16vtocl2ga 3493 . 2 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷))
1813mpondm0 7382 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) = ∅)
19 0ss 4292 . . 3 ∅ ⊆ (𝐶 Func 𝐷)
2018, 19eqsstrdi 3946 . 2 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷))
2117, 20pm2.61i 185 1 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1538  wcel 2111  wral 3070  Vcvv 3409  wss 3858  c0 4225   class class class wbr 5032  {copab 5094  ccnv 5523  Fun wfun 6329  cfv 6335  (class class class)co 7150  Basecbs 16541  Catccat 16993   Func cfunc 17183   Faith cfth 17232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-iota 6294  df-fun 6337  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-fth 17234
This theorem is referenced by:  relfth  17238  isfth  17243  fthoppc  17252  fthsect  17254  fthinv  17255  fthmon  17256  fthepi  17257  ffthiso  17258  cofth  17264  inclfusubc  44858
  Copyright terms: Public domain W3C validator