MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthfunc Structured version   Visualization version   GIF version

Theorem fthfunc 17960
Description: A faithful functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
fthfunc (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)

Proof of Theorem fthfunc
Dummy variables 𝑐 𝑑 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7437 . . . 4 (𝑐 = 𝐶 → (𝑐 Faith 𝑑) = (𝐶 Faith 𝑑))
2 oveq1 7437 . . . 4 (𝑐 = 𝐶 → (𝑐 Func 𝑑) = (𝐶 Func 𝑑))
31, 2sseq12d 4028 . . 3 (𝑐 = 𝐶 → ((𝑐 Faith 𝑑) ⊆ (𝑐 Func 𝑑) ↔ (𝐶 Faith 𝑑) ⊆ (𝐶 Func 𝑑)))
4 oveq2 7438 . . . 4 (𝑑 = 𝐷 → (𝐶 Faith 𝑑) = (𝐶 Faith 𝐷))
5 oveq2 7438 . . . 4 (𝑑 = 𝐷 → (𝐶 Func 𝑑) = (𝐶 Func 𝐷))
64, 5sseq12d 4028 . . 3 (𝑑 = 𝐷 → ((𝐶 Faith 𝑑) ⊆ (𝐶 Func 𝑑) ↔ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)))
7 ovex 7463 . . . . . 6 (𝑐 Func 𝑑) ∈ V
8 simpl 482 . . . . . . . 8 ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦)) → 𝑓(𝑐 Func 𝑑)𝑔)
98ssopab2i 5559 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ⊆ {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔}
10 opabss 5211 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔} ⊆ (𝑐 Func 𝑑)
119, 10sstri 4004 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ⊆ (𝑐 Func 𝑑)
127, 11ssexi 5327 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ∈ V
13 df-fth 17958 . . . . . 6 Faith = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1413ovmpt4g 7579 . . . . 5 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat ∧ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ∈ V) → (𝑐 Faith 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1512, 14mp3an3 1449 . . . 4 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Faith 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1615, 11eqsstrdi 4049 . . 3 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Faith 𝑑) ⊆ (𝑐 Func 𝑑))
173, 6, 16vtocl2ga 3577 . 2 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷))
1813mpondm0 7672 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) = ∅)
19 0ss 4405 . . 3 ∅ ⊆ (𝐶 Func 𝐷)
2018, 19eqsstrdi 4049 . 2 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷))
2117, 20pm2.61i 182 1 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  wss 3962  c0 4338   class class class wbr 5147  {copab 5209  ccnv 5687  Fun wfun 6556  cfv 6562  (class class class)co 7430  Basecbs 17244  Catccat 17708   Func cfunc 17904   Faith cfth 17956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-fth 17958
This theorem is referenced by:  relfth  17962  isfth  17967  fthoppc  17976  fthsect  17978  fthinv  17979  fthmon  17980  fthepi  17981  ffthiso  17982  cofth  17988  inclfusubc  17994
  Copyright terms: Public domain W3C validator