MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthfunc Structured version   Visualization version   GIF version

Theorem fthfunc 17834
Description: A faithful functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
fthfunc (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)

Proof of Theorem fthfunc
Dummy variables 𝑐 𝑑 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7360 . . . 4 (𝑐 = 𝐶 → (𝑐 Faith 𝑑) = (𝐶 Faith 𝑑))
2 oveq1 7360 . . . 4 (𝑐 = 𝐶 → (𝑐 Func 𝑑) = (𝐶 Func 𝑑))
31, 2sseq12d 3971 . . 3 (𝑐 = 𝐶 → ((𝑐 Faith 𝑑) ⊆ (𝑐 Func 𝑑) ↔ (𝐶 Faith 𝑑) ⊆ (𝐶 Func 𝑑)))
4 oveq2 7361 . . . 4 (𝑑 = 𝐷 → (𝐶 Faith 𝑑) = (𝐶 Faith 𝐷))
5 oveq2 7361 . . . 4 (𝑑 = 𝐷 → (𝐶 Func 𝑑) = (𝐶 Func 𝐷))
64, 5sseq12d 3971 . . 3 (𝑑 = 𝐷 → ((𝐶 Faith 𝑑) ⊆ (𝐶 Func 𝑑) ↔ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)))
7 ovex 7386 . . . . . 6 (𝑐 Func 𝑑) ∈ V
8 simpl 482 . . . . . . . 8 ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦)) → 𝑓(𝑐 Func 𝑑)𝑔)
98ssopab2i 5497 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ⊆ {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔}
10 opabss 5159 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔} ⊆ (𝑐 Func 𝑑)
119, 10sstri 3947 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ⊆ (𝑐 Func 𝑑)
127, 11ssexi 5264 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ∈ V
13 df-fth 17832 . . . . . 6 Faith = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1413ovmpt4g 7500 . . . . 5 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat ∧ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ∈ V) → (𝑐 Faith 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1512, 14mp3an3 1452 . . . 4 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Faith 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1615, 11eqsstrdi 3982 . . 3 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Faith 𝑑) ⊆ (𝑐 Func 𝑑))
173, 6, 16vtocl2ga 3535 . 2 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷))
1813mpondm0 7593 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) = ∅)
19 0ss 4353 . . 3 ∅ ⊆ (𝐶 Func 𝐷)
2018, 19eqsstrdi 3982 . 2 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷))
2117, 20pm2.61i 182 1 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  c0 4286   class class class wbr 5095  {copab 5157  ccnv 5622  Fun wfun 6480  cfv 6486  (class class class)co 7353  Basecbs 17138  Catccat 17588   Func cfunc 17779   Faith cfth 17830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-fth 17832
This theorem is referenced by:  relfth  17836  isfth  17841  fthoppc  17850  fthsect  17852  fthinv  17853  fthmon  17854  fthepi  17855  ffthiso  17856  cofth  17862  inclfusubc  17868  fthcomf  49130  fthoppf  49137
  Copyright terms: Public domain W3C validator