MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullfunc Structured version   Visualization version   GIF version

Theorem fullfunc 17870
Description: A full functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
fullfunc (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)

Proof of Theorem fullfunc
Dummy variables 𝑐 𝑑 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . . . 4 (𝑐 = 𝐶 → (𝑐 Full 𝑑) = (𝐶 Full 𝑑))
2 oveq1 7394 . . . 4 (𝑐 = 𝐶 → (𝑐 Func 𝑑) = (𝐶 Func 𝑑))
31, 2sseq12d 3980 . . 3 (𝑐 = 𝐶 → ((𝑐 Full 𝑑) ⊆ (𝑐 Func 𝑑) ↔ (𝐶 Full 𝑑) ⊆ (𝐶 Func 𝑑)))
4 oveq2 7395 . . . 4 (𝑑 = 𝐷 → (𝐶 Full 𝑑) = (𝐶 Full 𝐷))
5 oveq2 7395 . . . 4 (𝑑 = 𝐷 → (𝐶 Func 𝑑) = (𝐶 Func 𝐷))
64, 5sseq12d 3980 . . 3 (𝑑 = 𝐷 → ((𝐶 Full 𝑑) ⊆ (𝐶 Func 𝑑) ↔ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)))
7 ovex 7420 . . . . . 6 (𝑐 Func 𝑑) ∈ V
8 simpl 482 . . . . . . . 8 ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦))) → 𝑓(𝑐 Func 𝑑)𝑔)
98ssopab2i 5510 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ⊆ {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔}
10 opabss 5171 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔} ⊆ (𝑐 Func 𝑑)
119, 10sstri 3956 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ⊆ (𝑐 Func 𝑑)
127, 11ssexi 5277 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ∈ V
13 df-full 17868 . . . . . 6 Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
1413ovmpt4g 7536 . . . . 5 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat ∧ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ∈ V) → (𝑐 Full 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
1512, 14mp3an3 1452 . . . 4 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Full 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
1615, 11eqsstrdi 3991 . . 3 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Full 𝑑) ⊆ (𝑐 Func 𝑑))
173, 6, 16vtocl2ga 3544 . 2 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷))
1813mpondm0 7629 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) = ∅)
19 0ss 4363 . . 3 ∅ ⊆ (𝐶 Func 𝐷)
2018, 19eqsstrdi 3991 . 2 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷))
2117, 20pm2.61i 182 1 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  c0 4296   class class class wbr 5107  {copab 5169  ran crn 5639  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  Catccat 17625   Func cfunc 17816   Full cful 17866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-full 17868
This theorem is referenced by:  relfull  17872  isfull  17874  fulloppc  17886  cofull  17898  catcisolem  18072  catciso  18073  imasubc  49140  imasubc2  49141  idfullsubc  49150  fulloppf  49152  uptrlem1  49199  uptrlem2  49200  uptrlem3  49201  uptra  49204  uptrar  49205  uobeqw  49208  uobeq  49209  uptr2  49210  uptr2a  49211  fucoppcfunc  49401  fullthinc2  49440  thincciso  49442  fulltermc2  49501  termfucterm  49533  uobeqterm  49535
  Copyright terms: Public domain W3C validator