MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullfunc Structured version   Visualization version   GIF version

Theorem fullfunc 17178
Description: A full functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
fullfunc (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)

Proof of Theorem fullfunc
Dummy variables 𝑐 𝑑 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7165 . . . 4 (𝑐 = 𝐶 → (𝑐 Full 𝑑) = (𝐶 Full 𝑑))
2 oveq1 7165 . . . 4 (𝑐 = 𝐶 → (𝑐 Func 𝑑) = (𝐶 Func 𝑑))
31, 2sseq12d 4002 . . 3 (𝑐 = 𝐶 → ((𝑐 Full 𝑑) ⊆ (𝑐 Func 𝑑) ↔ (𝐶 Full 𝑑) ⊆ (𝐶 Func 𝑑)))
4 oveq2 7166 . . . 4 (𝑑 = 𝐷 → (𝐶 Full 𝑑) = (𝐶 Full 𝐷))
5 oveq2 7166 . . . 4 (𝑑 = 𝐷 → (𝐶 Func 𝑑) = (𝐶 Func 𝐷))
64, 5sseq12d 4002 . . 3 (𝑑 = 𝐷 → ((𝐶 Full 𝑑) ⊆ (𝐶 Func 𝑑) ↔ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)))
7 ovex 7191 . . . . . 6 (𝑐 Func 𝑑) ∈ V
8 simpl 485 . . . . . . . 8 ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦))) → 𝑓(𝑐 Func 𝑑)𝑔)
98ssopab2i 5439 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ⊆ {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔}
10 opabss 5132 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔} ⊆ (𝑐 Func 𝑑)
119, 10sstri 3978 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ⊆ (𝑐 Func 𝑑)
127, 11ssexi 5228 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ∈ V
13 df-full 17176 . . . . . 6 Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
1413ovmpt4g 7299 . . . . 5 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat ∧ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ∈ V) → (𝑐 Full 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
1512, 14mp3an3 1446 . . . 4 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Full 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
1615, 11eqsstrdi 4023 . . 3 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Full 𝑑) ⊆ (𝑐 Func 𝑑))
173, 6, 16vtocl2ga 3577 . 2 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷))
1813mpondm0 7388 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) = ∅)
19 0ss 4352 . . 3 ∅ ⊆ (𝐶 Func 𝐷)
2018, 19eqsstrdi 4023 . 2 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷))
2117, 20pm2.61i 184 1 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  wss 3938  c0 4293   class class class wbr 5068  {copab 5130  ran crn 5558  cfv 6357  (class class class)co 7158  Basecbs 16485  Hom chom 16578  Catccat 16937   Func cfunc 17126   Full cful 17174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-full 17176
This theorem is referenced by:  relfull  17180  isfull  17182  fulloppc  17194  cofull  17206  catcisolem  17368  catciso  17369
  Copyright terms: Public domain W3C validator