| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7438 |
. . . 4
⊢ (𝑐 = 𝐶 → (𝑐 Full 𝑑) = (𝐶 Full 𝑑)) |
| 2 | | oveq1 7438 |
. . . 4
⊢ (𝑐 = 𝐶 → (𝑐 Func 𝑑) = (𝐶 Func 𝑑)) |
| 3 | 1, 2 | sseq12d 4017 |
. . 3
⊢ (𝑐 = 𝐶 → ((𝑐 Full 𝑑) ⊆ (𝑐 Func 𝑑) ↔ (𝐶 Full 𝑑) ⊆ (𝐶 Func 𝑑))) |
| 4 | | oveq2 7439 |
. . . 4
⊢ (𝑑 = 𝐷 → (𝐶 Full 𝑑) = (𝐶 Full 𝐷)) |
| 5 | | oveq2 7439 |
. . . 4
⊢ (𝑑 = 𝐷 → (𝐶 Func 𝑑) = (𝐶 Func 𝐷)) |
| 6 | 4, 5 | sseq12d 4017 |
. . 3
⊢ (𝑑 = 𝐷 → ((𝐶 Full 𝑑) ⊆ (𝐶 Func 𝑑) ↔ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷))) |
| 7 | | ovex 7464 |
. . . . . 6
⊢ (𝑐 Func 𝑑) ∈ V |
| 8 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝑑)(𝑓‘𝑦))) → 𝑓(𝑐 Func 𝑑)𝑔) |
| 9 | 8 | ssopab2i 5555 |
. . . . . . 7
⊢
{〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝑑)(𝑓‘𝑦)))} ⊆ {〈𝑓, 𝑔〉 ∣ 𝑓(𝑐 Func 𝑑)𝑔} |
| 10 | | opabss 5207 |
. . . . . . 7
⊢
{〈𝑓, 𝑔〉 ∣ 𝑓(𝑐 Func 𝑑)𝑔} ⊆ (𝑐 Func 𝑑) |
| 11 | 9, 10 | sstri 3993 |
. . . . . 6
⊢
{〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝑑)(𝑓‘𝑦)))} ⊆ (𝑐 Func 𝑑) |
| 12 | 7, 11 | ssexi 5322 |
. . . . 5
⊢
{〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝑑)(𝑓‘𝑦)))} ∈ V |
| 13 | | df-full 17951 |
. . . . . 6
⊢ Full =
(𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝑑)(𝑓‘𝑦)))}) |
| 14 | 13 | ovmpt4g 7580 |
. . . . 5
⊢ ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat ∧ {〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝑑)(𝑓‘𝑦)))} ∈ V) → (𝑐 Full 𝑑) = {〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝑑)(𝑓‘𝑦)))}) |
| 15 | 12, 14 | mp3an3 1452 |
. . . 4
⊢ ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Full 𝑑) = {〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝑑)(𝑓‘𝑦)))}) |
| 16 | 15, 11 | eqsstrdi 4028 |
. . 3
⊢ ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Full 𝑑) ⊆ (𝑐 Func 𝑑)) |
| 17 | 3, 6, 16 | vtocl2ga 3578 |
. 2
⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)) |
| 18 | 13 | mpondm0 7673 |
. . 3
⊢ (¬
(𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) = ∅) |
| 19 | | 0ss 4400 |
. . 3
⊢ ∅
⊆ (𝐶 Func 𝐷) |
| 20 | 18, 19 | eqsstrdi 4028 |
. 2
⊢ (¬
(𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)) |
| 21 | 17, 20 | pm2.61i 182 |
1
⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) |