MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullfunc Structured version   Visualization version   GIF version

Theorem fullfunc 17538
Description: A full functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
fullfunc (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)

Proof of Theorem fullfunc
Dummy variables 𝑐 𝑑 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . 4 (𝑐 = 𝐶 → (𝑐 Full 𝑑) = (𝐶 Full 𝑑))
2 oveq1 7262 . . . 4 (𝑐 = 𝐶 → (𝑐 Func 𝑑) = (𝐶 Func 𝑑))
31, 2sseq12d 3950 . . 3 (𝑐 = 𝐶 → ((𝑐 Full 𝑑) ⊆ (𝑐 Func 𝑑) ↔ (𝐶 Full 𝑑) ⊆ (𝐶 Func 𝑑)))
4 oveq2 7263 . . . 4 (𝑑 = 𝐷 → (𝐶 Full 𝑑) = (𝐶 Full 𝐷))
5 oveq2 7263 . . . 4 (𝑑 = 𝐷 → (𝐶 Func 𝑑) = (𝐶 Func 𝐷))
64, 5sseq12d 3950 . . 3 (𝑑 = 𝐷 → ((𝐶 Full 𝑑) ⊆ (𝐶 Func 𝑑) ↔ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)))
7 ovex 7288 . . . . . 6 (𝑐 Func 𝑑) ∈ V
8 simpl 482 . . . . . . . 8 ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦))) → 𝑓(𝑐 Func 𝑑)𝑔)
98ssopab2i 5456 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ⊆ {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔}
10 opabss 5134 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔} ⊆ (𝑐 Func 𝑑)
119, 10sstri 3926 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ⊆ (𝑐 Func 𝑑)
127, 11ssexi 5241 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ∈ V
13 df-full 17536 . . . . . 6 Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
1413ovmpt4g 7398 . . . . 5 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat ∧ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} ∈ V) → (𝑐 Full 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
1512, 14mp3an3 1448 . . . 4 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Full 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
1615, 11eqsstrdi 3971 . . 3 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Full 𝑑) ⊆ (𝑐 Func 𝑑))
173, 6, 16vtocl2ga 3504 . 2 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷))
1813mpondm0 7488 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) = ∅)
19 0ss 4327 . . 3 ∅ ⊆ (𝐶 Func 𝐷)
2018, 19eqsstrdi 3971 . 2 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷))
2117, 20pm2.61i 182 1 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  c0 4253   class class class wbr 5070  {copab 5132  ran crn 5581  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  Catccat 17290   Func cfunc 17485   Full cful 17534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-full 17536
This theorem is referenced by:  relfull  17540  isfull  17542  fulloppc  17554  cofull  17566  catcisolem  17741  catciso  17742  fullthinc2  46216  thincciso  46218
  Copyright terms: Public domain W3C validator