MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfth Structured version   Visualization version   GIF version

Theorem isfth 17885
Description: Value of the set of faithful functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypothesis
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
isfth (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦

Proof of Theorem isfth
Dummy variables 𝑐 𝑑 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fthfunc 17878 . . 3 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
21ssbri 5155 . 2 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
3 df-br 5111 . . . . . . 7 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
4 funcrcl 17832 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
53, 4sylbi 217 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
6 oveq12 7399 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑐 Func 𝑑) = (𝐶 Func 𝐷))
76breqd 5121 . . . . . . . . 9 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑓(𝑐 Func 𝑑)𝑔𝑓(𝐶 Func 𝐷)𝑔))
8 simpl 482 . . . . . . . . . . . 12 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
98fveq2d 6865 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶))
10 isfth.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
119, 10eqtr4di 2783 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = 𝐵)
1211raleqdv 3301 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦) ↔ ∀𝑦𝐵 Fun (𝑥𝑔𝑦)))
1311, 12raleqbidv 3321 . . . . . . . . 9 ((𝑐 = 𝐶𝑑 = 𝐷) → (∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦) ↔ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦)))
147, 13anbi12d 632 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦)) ↔ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))))
1514opabbidv 5176 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))})
16 df-fth 17876 . . . . . . 7 Faith = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
17 ovex 7423 . . . . . . . 8 (𝐶 Func 𝐷) ∈ V
18 simpl 482 . . . . . . . . . 10 ((𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦)) → 𝑓(𝐶 Func 𝐷)𝑔)
1918ssopab2i 5513 . . . . . . . . 9 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))} ⊆ {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝐶 Func 𝐷)𝑔}
20 opabss 5174 . . . . . . . . 9 {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝐶 Func 𝐷)𝑔} ⊆ (𝐶 Func 𝐷)
2119, 20sstri 3959 . . . . . . . 8 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))} ⊆ (𝐶 Func 𝐷)
2217, 21ssexi 5280 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))} ∈ V
2315, 16, 22ovmpoa 7547 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))})
245, 23syl 17 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 Faith 𝐷) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))})
2524breqd 5121 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Faith 𝐷)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))}𝐺))
26 relfunc 17831 . . . . . 6 Rel (𝐶 Func 𝐷)
2726brrelex12i 5696 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
28 breq12 5115 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓(𝐶 Func 𝐷)𝑔𝐹(𝐶 Func 𝐷)𝐺))
29 simpr 484 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
3029oveqd 7407 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
3130cnveqd 5842 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
3231funeqd 6541 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → (Fun (𝑥𝑔𝑦) ↔ Fun (𝑥𝐺𝑦)))
33322ralbidv 3202 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦) ↔ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦)))
3428, 33anbi12d 632 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦)) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦))))
35 eqid 2730 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))} = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))}
3634, 35brabga 5497 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))}𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦))))
3727, 36syl 17 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝑔𝑦))}𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦))))
3825, 37bitrd 279 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦))))
3938bianabs 541 . 2 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Faith 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦)))
402, 39biadanii 821 1 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cop 4598   class class class wbr 5110  {copab 5172  ccnv 5640  Fun wfun 6508  cfv 6514  (class class class)co 7390  Basecbs 17186  Catccat 17632   Func cfunc 17823   Faith cfth 17874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-func 17827  df-fth 17876
This theorem is referenced by:  isfth2  17886  fthpropd  17892  fthoppc  17894  fthres2b  17901  fthres2c  17902  fthres2  17903  idfth  49151
  Copyright terms: Public domain W3C validator