Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartfun Structured version   Visualization version   GIF version

Theorem funpartfun 33408
Description: The functional part of 𝐹 is a function. (Contributed by Scott Fenton, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
funpartfun Fun Funpart𝐹

Proof of Theorem funpartfun
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5885 . 2 Rel (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
2 vex 3500 . . . . . . 7 𝑧 ∈ V
32brresi 5865 . . . . . 6 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧 ↔ (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ∧ 𝑥𝐹𝑧))
43simprbi 499 . . . . 5 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧𝑥𝐹𝑧)
5 vex 3500 . . . . . . . 8 𝑦 ∈ V
65brresi 5865 . . . . . . 7 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ↔ (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ∧ 𝑥𝐹𝑦))
7 funpartlem 33407 . . . . . . . 8 (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑤(𝐹 “ {𝑥}) = {𝑤})
87anbi1i 625 . . . . . . 7 ((𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ∧ 𝑥𝐹𝑦) ↔ (∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦))
96, 8bitri 277 . . . . . 6 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ↔ (∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦))
10 df-br 5070 . . . . . . . . . . 11 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
11 df-br 5070 . . . . . . . . . . 11 (𝑥𝐹𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐹)
1210, 11anbi12i 628 . . . . . . . . . 10 ((𝑥𝐹𝑦𝑥𝐹𝑧) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
13 vex 3500 . . . . . . . . . . . 12 𝑥 ∈ V
1413, 5elimasn 5957 . . . . . . . . . . 11 (𝑦 ∈ (𝐹 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
1513, 2elimasn 5957 . . . . . . . . . . 11 (𝑧 ∈ (𝐹 “ {𝑥}) ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐹)
1614, 15anbi12i 628 . . . . . . . . . 10 ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
1712, 16bitr4i 280 . . . . . . . . 9 ((𝑥𝐹𝑦𝑥𝐹𝑧) ↔ (𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})))
18 eleq2 2904 . . . . . . . . . . 11 ((𝐹 “ {𝑥}) = {𝑤} → (𝑦 ∈ (𝐹 “ {𝑥}) ↔ 𝑦 ∈ {𝑤}))
19 eleq2 2904 . . . . . . . . . . 11 ((𝐹 “ {𝑥}) = {𝑤} → (𝑧 ∈ (𝐹 “ {𝑥}) ↔ 𝑧 ∈ {𝑤}))
2018, 19anbi12d 632 . . . . . . . . . 10 ((𝐹 “ {𝑥}) = {𝑤} → ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) ↔ (𝑦 ∈ {𝑤} ∧ 𝑧 ∈ {𝑤})))
21 velsn 4586 . . . . . . . . . . 11 (𝑦 ∈ {𝑤} ↔ 𝑦 = 𝑤)
22 velsn 4586 . . . . . . . . . . 11 (𝑧 ∈ {𝑤} ↔ 𝑧 = 𝑤)
23 equtr2 2033 . . . . . . . . . . 11 ((𝑦 = 𝑤𝑧 = 𝑤) → 𝑦 = 𝑧)
2421, 22, 23syl2anb 599 . . . . . . . . . 10 ((𝑦 ∈ {𝑤} ∧ 𝑧 ∈ {𝑤}) → 𝑦 = 𝑧)
2520, 24syl6bi 255 . . . . . . . . 9 ((𝐹 “ {𝑥}) = {𝑤} → ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) → 𝑦 = 𝑧))
2617, 25syl5bi 244 . . . . . . . 8 ((𝐹 “ {𝑥}) = {𝑤} → ((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
2726exlimiv 1930 . . . . . . 7 (∃𝑤(𝐹 “ {𝑥}) = {𝑤} → ((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
2827impl 458 . . . . . 6 (((∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦) ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)
299, 28sylanb 583 . . . . 5 ((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)
304, 29sylan2 594 . . . 4 ((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)
3130gen2 1796 . . 3 𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)
3231ax-gen 1795 . 2 𝑥𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)
33 df-funpart 33339 . . . 4 Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
3433funeqi 6379 . . 3 (Fun Funpart𝐹 ↔ Fun (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))))
35 dffun2 6368 . . 3 (Fun (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ↔ (Rel (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)))
3634, 35bitri 277 . 2 (Fun Funpart𝐹 ↔ (Rel (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)))
371, 32, 36mpbir2an 709 1 Fun Funpart𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1534   = wceq 1536  wex 1779  wcel 2113  Vcvv 3497  cin 3938  {csn 4570  cop 4576   class class class wbr 5069   × cxp 5556  dom cdm 5558  cres 5560  cima 5561  ccom 5562  Rel wrel 5563  Fun wfun 6352  Singletoncsingle 33303   Singletons csingles 33304  Imagecimage 33305  Funpartcfunpart 33314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-symdif 4222  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-eprel 5468  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fo 6364  df-fv 6366  df-1st 7692  df-2nd 7693  df-txp 33319  df-singleton 33327  df-singles 33328  df-image 33329  df-funpart 33339
This theorem is referenced by:  fullfunfnv  33411  fullfunfv  33412
  Copyright terms: Public domain W3C validator