Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartfun Structured version   Visualization version   GIF version

Theorem funpartfun 35936
Description: The functional part of 𝐹 is a function. (Contributed by Scott Fenton, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
funpartfun Fun Funpart𝐹

Proof of Theorem funpartfun
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5960 . 2 Rel (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
2 vex 3442 . . . . . . 7 𝑧 ∈ V
32brresi 5943 . . . . . 6 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧 ↔ (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ∧ 𝑥𝐹𝑧))
43simprbi 496 . . . . 5 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧𝑥𝐹𝑧)
5 vex 3442 . . . . . . . 8 𝑦 ∈ V
65brresi 5943 . . . . . . 7 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ↔ (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ∧ 𝑥𝐹𝑦))
7 funpartlem 35935 . . . . . . . 8 (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑤(𝐹 “ {𝑥}) = {𝑤})
87anbi1i 624 . . . . . . 7 ((𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ∧ 𝑥𝐹𝑦) ↔ (∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦))
96, 8bitri 275 . . . . . 6 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ↔ (∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦))
10 df-br 5096 . . . . . . . . . . 11 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
11 df-br 5096 . . . . . . . . . . 11 (𝑥𝐹𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐹)
1210, 11anbi12i 628 . . . . . . . . . 10 ((𝑥𝐹𝑦𝑥𝐹𝑧) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
13 vex 3442 . . . . . . . . . . . 12 𝑥 ∈ V
1413, 5elimasn 6045 . . . . . . . . . . 11 (𝑦 ∈ (𝐹 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
1513, 2elimasn 6045 . . . . . . . . . . 11 (𝑧 ∈ (𝐹 “ {𝑥}) ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐹)
1614, 15anbi12i 628 . . . . . . . . . 10 ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
1712, 16bitr4i 278 . . . . . . . . 9 ((𝑥𝐹𝑦𝑥𝐹𝑧) ↔ (𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})))
18 eleq2 2817 . . . . . . . . . . 11 ((𝐹 “ {𝑥}) = {𝑤} → (𝑦 ∈ (𝐹 “ {𝑥}) ↔ 𝑦 ∈ {𝑤}))
19 eleq2 2817 . . . . . . . . . . 11 ((𝐹 “ {𝑥}) = {𝑤} → (𝑧 ∈ (𝐹 “ {𝑥}) ↔ 𝑧 ∈ {𝑤}))
2018, 19anbi12d 632 . . . . . . . . . 10 ((𝐹 “ {𝑥}) = {𝑤} → ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) ↔ (𝑦 ∈ {𝑤} ∧ 𝑧 ∈ {𝑤})))
21 velsn 4595 . . . . . . . . . . 11 (𝑦 ∈ {𝑤} ↔ 𝑦 = 𝑤)
22 velsn 4595 . . . . . . . . . . 11 (𝑧 ∈ {𝑤} ↔ 𝑧 = 𝑤)
23 equtr2 2027 . . . . . . . . . . 11 ((𝑦 = 𝑤𝑧 = 𝑤) → 𝑦 = 𝑧)
2421, 22, 23syl2anb 598 . . . . . . . . . 10 ((𝑦 ∈ {𝑤} ∧ 𝑧 ∈ {𝑤}) → 𝑦 = 𝑧)
2520, 24biimtrdi 253 . . . . . . . . 9 ((𝐹 “ {𝑥}) = {𝑤} → ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) → 𝑦 = 𝑧))
2617, 25biimtrid 242 . . . . . . . 8 ((𝐹 “ {𝑥}) = {𝑤} → ((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
2726exlimiv 1930 . . . . . . 7 (∃𝑤(𝐹 “ {𝑥}) = {𝑤} → ((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
2827impl 455 . . . . . 6 (((∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦) ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)
299, 28sylanb 581 . . . . 5 ((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)
304, 29sylan2 593 . . . 4 ((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)
3130gen2 1796 . . 3 𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)
3231ax-gen 1795 . 2 𝑥𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)
33 df-funpart 35867 . . . 4 Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
3433funeqi 6507 . . 3 (Fun Funpart𝐹 ↔ Fun (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))))
35 dffun2 6496 . . 3 (Fun (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ↔ (Rel (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)))
3634, 35bitri 275 . 2 (Fun Funpart𝐹 ↔ (Rel (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)))
371, 32, 36mpbir2an 711 1 Fun Funpart𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  cin 3904  {csn 4579  cop 4585   class class class wbr 5095   × cxp 5621  dom cdm 5623  cres 5625  cima 5626  ccom 5627  Rel wrel 5628  Fun wfun 6480  Singletoncsingle 35831   Singletons csingles 35832  Imagecimage 35833  Funpartcfunpart 35842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-symdif 4206  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7931  df-2nd 7932  df-txp 35847  df-singleton 35855  df-singles 35856  df-image 35857  df-funpart 35867
This theorem is referenced by:  fullfunfnv  35939  fullfunfv  35940
  Copyright terms: Public domain W3C validator