Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartfun Structured version   Visualization version   GIF version

Theorem funpartfun 34903
Description: The functional part of 𝐹 is a function. (Contributed by Scott Fenton, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
funpartfun Fun Funpart𝐹

Proof of Theorem funpartfun
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6008 . 2 Rel (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
2 vex 3478 . . . . . . 7 𝑧 ∈ V
32brresi 5988 . . . . . 6 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧 ↔ (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ∧ 𝑥𝐹𝑧))
43simprbi 497 . . . . 5 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧𝑥𝐹𝑧)
5 vex 3478 . . . . . . . 8 𝑦 ∈ V
65brresi 5988 . . . . . . 7 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ↔ (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ∧ 𝑥𝐹𝑦))
7 funpartlem 34902 . . . . . . . 8 (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑤(𝐹 “ {𝑥}) = {𝑤})
87anbi1i 624 . . . . . . 7 ((𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ∧ 𝑥𝐹𝑦) ↔ (∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦))
96, 8bitri 274 . . . . . 6 (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ↔ (∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦))
10 df-br 5148 . . . . . . . . . . 11 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
11 df-br 5148 . . . . . . . . . . 11 (𝑥𝐹𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐹)
1210, 11anbi12i 627 . . . . . . . . . 10 ((𝑥𝐹𝑦𝑥𝐹𝑧) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
13 vex 3478 . . . . . . . . . . . 12 𝑥 ∈ V
1413, 5elimasn 6085 . . . . . . . . . . 11 (𝑦 ∈ (𝐹 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
1513, 2elimasn 6085 . . . . . . . . . . 11 (𝑧 ∈ (𝐹 “ {𝑥}) ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐹)
1614, 15anbi12i 627 . . . . . . . . . 10 ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
1712, 16bitr4i 277 . . . . . . . . 9 ((𝑥𝐹𝑦𝑥𝐹𝑧) ↔ (𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})))
18 eleq2 2822 . . . . . . . . . . 11 ((𝐹 “ {𝑥}) = {𝑤} → (𝑦 ∈ (𝐹 “ {𝑥}) ↔ 𝑦 ∈ {𝑤}))
19 eleq2 2822 . . . . . . . . . . 11 ((𝐹 “ {𝑥}) = {𝑤} → (𝑧 ∈ (𝐹 “ {𝑥}) ↔ 𝑧 ∈ {𝑤}))
2018, 19anbi12d 631 . . . . . . . . . 10 ((𝐹 “ {𝑥}) = {𝑤} → ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) ↔ (𝑦 ∈ {𝑤} ∧ 𝑧 ∈ {𝑤})))
21 velsn 4643 . . . . . . . . . . 11 (𝑦 ∈ {𝑤} ↔ 𝑦 = 𝑤)
22 velsn 4643 . . . . . . . . . . 11 (𝑧 ∈ {𝑤} ↔ 𝑧 = 𝑤)
23 equtr2 2030 . . . . . . . . . . 11 ((𝑦 = 𝑤𝑧 = 𝑤) → 𝑦 = 𝑧)
2421, 22, 23syl2anb 598 . . . . . . . . . 10 ((𝑦 ∈ {𝑤} ∧ 𝑧 ∈ {𝑤}) → 𝑦 = 𝑧)
2520, 24syl6bi 252 . . . . . . . . 9 ((𝐹 “ {𝑥}) = {𝑤} → ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) → 𝑦 = 𝑧))
2617, 25biimtrid 241 . . . . . . . 8 ((𝐹 “ {𝑥}) = {𝑤} → ((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
2726exlimiv 1933 . . . . . . 7 (∃𝑤(𝐹 “ {𝑥}) = {𝑤} → ((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
2827impl 456 . . . . . 6 (((∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦) ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)
299, 28sylanb 581 . . . . 5 ((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)
304, 29sylan2 593 . . . 4 ((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)
3130gen2 1798 . . 3 𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)
3231ax-gen 1797 . 2 𝑥𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)
33 df-funpart 34834 . . . 4 Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
3433funeqi 6566 . . 3 (Fun Funpart𝐹 ↔ Fun (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))))
35 dffun2 6550 . . 3 (Fun (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ↔ (Rel (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)))
3634, 35bitri 274 . 2 (Fun Funpart𝐹 ↔ (Rel (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧)))
371, 32, 36mpbir2an 709 1 Fun Funpart𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  Vcvv 3474  cin 3946  {csn 4627  cop 4633   class class class wbr 5147   × cxp 5673  dom cdm 5675  cres 5677  cima 5678  ccom 5679  Rel wrel 5680  Fun wfun 6534  Singletoncsingle 34798   Singletons csingles 34799  Imagecimage 34800  Funpartcfunpart 34809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-symdif 4241  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-eprel 5579  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-1st 7971  df-2nd 7972  df-txp 34814  df-singleton 34822  df-singles 34823  df-image 34824  df-funpart 34834
This theorem is referenced by:  fullfunfnv  34906  fullfunfv  34907
  Copyright terms: Public domain W3C validator