| Step | Hyp | Ref
| Expression |
| 1 | | relres 5997 |
. 2
⊢ Rel
(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V
× Singletons ))) |
| 2 | | vex 3468 |
. . . . . . 7
⊢ 𝑧 ∈ V |
| 3 | 2 | brresi 5980 |
. . . . . 6
⊢ (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧 ↔ (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ∧ 𝑥𝐹𝑧)) |
| 4 | 3 | simprbi 496 |
. . . . 5
⊢ (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧 → 𝑥𝐹𝑧) |
| 5 | | vex 3468 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 6 | 5 | brresi 5980 |
. . . . . . 7
⊢ (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ↔ (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ∧ 𝑥𝐹𝑦)) |
| 7 | | funpartlem 35965 |
. . . . . . . 8
⊢ (𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V
× Singletons )) ↔ ∃𝑤(𝐹 “ {𝑥}) = {𝑤}) |
| 8 | 7 | anbi1i 624 |
. . . . . . 7
⊢ ((𝑥 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V
× Singletons )) ∧ 𝑥𝐹𝑦) ↔ (∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦)) |
| 9 | 6, 8 | bitri 275 |
. . . . . 6
⊢ (𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ↔ (∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦)) |
| 10 | | df-br 5125 |
. . . . . . . . . . 11
⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) |
| 11 | | df-br 5125 |
. . . . . . . . . . 11
⊢ (𝑥𝐹𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝐹) |
| 12 | 10, 11 | anbi12i 628 |
. . . . . . . . . 10
⊢ ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) ↔ (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹)) |
| 13 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 14 | 13, 5 | elimasn 6082 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐹 “ {𝑥}) ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) |
| 15 | 13, 2 | elimasn 6082 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐹 “ {𝑥}) ↔ 〈𝑥, 𝑧〉 ∈ 𝐹) |
| 16 | 14, 15 | anbi12i 628 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) ↔ (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹)) |
| 17 | 12, 16 | bitr4i 278 |
. . . . . . . . 9
⊢ ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) ↔ (𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥}))) |
| 18 | | eleq2 2824 |
. . . . . . . . . . 11
⊢ ((𝐹 “ {𝑥}) = {𝑤} → (𝑦 ∈ (𝐹 “ {𝑥}) ↔ 𝑦 ∈ {𝑤})) |
| 19 | | eleq2 2824 |
. . . . . . . . . . 11
⊢ ((𝐹 “ {𝑥}) = {𝑤} → (𝑧 ∈ (𝐹 “ {𝑥}) ↔ 𝑧 ∈ {𝑤})) |
| 20 | 18, 19 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝐹 “ {𝑥}) = {𝑤} → ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) ↔ (𝑦 ∈ {𝑤} ∧ 𝑧 ∈ {𝑤}))) |
| 21 | | velsn 4622 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝑤} ↔ 𝑦 = 𝑤) |
| 22 | | velsn 4622 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {𝑤} ↔ 𝑧 = 𝑤) |
| 23 | | equtr2 2027 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝑤 ∧ 𝑧 = 𝑤) → 𝑦 = 𝑧) |
| 24 | 21, 22, 23 | syl2anb 598 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ {𝑤} ∧ 𝑧 ∈ {𝑤}) → 𝑦 = 𝑧) |
| 25 | 20, 24 | biimtrdi 253 |
. . . . . . . . 9
⊢ ((𝐹 “ {𝑥}) = {𝑤} → ((𝑦 ∈ (𝐹 “ {𝑥}) ∧ 𝑧 ∈ (𝐹 “ {𝑥})) → 𝑦 = 𝑧)) |
| 26 | 17, 25 | biimtrid 242 |
. . . . . . . 8
⊢ ((𝐹 “ {𝑥}) = {𝑤} → ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
| 27 | 26 | exlimiv 1930 |
. . . . . . 7
⊢
(∃𝑤(𝐹 “ {𝑥}) = {𝑤} → ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
| 28 | 27 | impl 455 |
. . . . . 6
⊢
(((∃𝑤(𝐹 “ {𝑥}) = {𝑤} ∧ 𝑥𝐹𝑦) ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) |
| 29 | 9, 28 | sylanb 581 |
. . . . 5
⊢ ((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) |
| 30 | 4, 29 | sylan2 593 |
. . . 4
⊢ ((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ∧ 𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧) |
| 31 | 30 | gen2 1796 |
. . 3
⊢
∀𝑦∀𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ∧ 𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧) |
| 32 | 31 | ax-gen 1795 |
. 2
⊢
∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ∧ 𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧) |
| 33 | | df-funpart 35897 |
. . . 4
⊢
Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V
× Singletons ))) |
| 34 | 33 | funeqi 6562 |
. . 3
⊢ (Fun
Funpart𝐹 ↔ Fun (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V
× Singletons )))) |
| 35 | | dffun2 6546 |
. . 3
⊢ (Fun
(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V
× Singletons ))) ↔ (Rel (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V
× Singletons ))) ∧ ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ∧ 𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧))) |
| 36 | 34, 35 | bitri 275 |
. 2
⊢ (Fun
Funpart𝐹 ↔ (Rel (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V
× Singletons ))) ∧ ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑦 ∧ 𝑥(𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))𝑧) → 𝑦 = 𝑧))) |
| 37 | 1, 32, 36 | mpbir2an 711 |
1
⊢ Fun
Funpart𝐹 |