![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funpartss | Structured version Visualization version GIF version |
Description: The functional part of 𝐹 is a subset of 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
funpartss | ⊢ Funpart𝐹 ⊆ 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-funpart 34676 | . 2 ⊢ Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) | |
2 | resss 5998 | . 2 ⊢ (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ⊆ 𝐹 | |
3 | 1, 2 | eqsstri 4012 | 1 ⊢ Funpart𝐹 ⊆ 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3473 ∩ cin 3943 ⊆ wss 3944 × cxp 5667 dom cdm 5669 ↾ cres 5671 ∘ ccom 5673 Singletoncsingle 34640 Singletons csingles 34641 Imagecimage 34642 Funpartcfunpart 34651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3951 df-ss 3961 df-res 5681 df-funpart 34676 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |