| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funpartss | Structured version Visualization version GIF version | ||
| Description: The functional part of 𝐹 is a subset of 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| funpartss | ⊢ Funpart𝐹 ⊆ 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-funpart 35892 | . 2 ⊢ Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) | |
| 2 | resss 5988 | . 2 ⊢ (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ⊆ 𝐹 | |
| 3 | 1, 2 | eqsstri 4005 | 1 ⊢ Funpart𝐹 ⊆ 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 × cxp 5652 dom cdm 5654 ↾ cres 5656 ∘ ccom 5658 Singletoncsingle 35856 Singletons csingles 35857 Imagecimage 35858 Funpartcfunpart 35867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ss 3943 df-res 5666 df-funpart 35892 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |