Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartss Structured version   Visualization version   GIF version

Theorem funpartss 34173
Description: The functional part of 𝐹 is a subset of 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funpartss Funpart𝐹𝐹

Proof of Theorem funpartss
StepHypRef Expression
1 df-funpart 34103 . 2 Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
2 resss 5905 . 2 (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ⊆ 𝐹
31, 2eqsstri 3951 1 Funpart𝐹𝐹
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3422  cin 3882  wss 3883   × cxp 5578  dom cdm 5580  cres 5582  ccom 5584  Singletoncsingle 34067   Singletons csingles 34068  Imagecimage 34069  Funpartcfunpart 34078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-res 5592  df-funpart 34103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator