| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funpartss | Structured version Visualization version GIF version | ||
| Description: The functional part of 𝐹 is a subset of 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| funpartss | ⊢ Funpart𝐹 ⊆ 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-funpart 35908 | . 2 ⊢ Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) | |
| 2 | resss 5945 | . 2 ⊢ (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) ⊆ 𝐹 | |
| 3 | 1, 2 | eqsstri 3976 | 1 ⊢ Funpart𝐹 ⊆ 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 × cxp 5609 dom cdm 5611 ↾ cres 5613 ∘ ccom 5615 Singletoncsingle 35872 Singletons csingles 35873 Imagecimage 35874 Funpartcfunpart 35883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 df-res 5623 df-funpart 35908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |