Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartfv Structured version   Visualization version   GIF version

Theorem funpartfv 35963
Description: The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funpartfv (Funpart𝐹𝐴) = (𝐹𝐴)

Proof of Theorem funpartfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-funpart 35892 . . 3 Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
21fveq1i 6877 . 2 (Funpart𝐹𝐴) = ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴)
3 fvres 6895 . . 3 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴))
4 nfvres 6917 . . . 4 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = ∅)
5 funpartlem 35960 . . . . . . . . 9 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
6 eusn 4706 . . . . . . . . 9 (∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
75, 6bitr4i 278 . . . . . . . 8 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}))
8 elimasng 6076 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
98elvd 3465 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
10 df-br 5120 . . . . . . . . . 10 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
119, 10bitr4di 289 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
1211eubidv 2585 . . . . . . . 8 (𝐴 ∈ V → (∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}) ↔ ∃!𝑥 𝐴𝐹𝑥))
137, 12bitrid 283 . . . . . . 7 (𝐴 ∈ V → (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃!𝑥 𝐴𝐹𝑥))
1413notbid 318 . . . . . 6 (𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ¬ ∃!𝑥 𝐴𝐹𝑥))
15 tz6.12-2 6864 . . . . . 6 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
1614, 15biimtrdi 253 . . . . 5 (𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅))
17 fvprc 6868 . . . . . 6 𝐴 ∈ V → (𝐹𝐴) = ∅)
1817a1d 25 . . . . 5 𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅))
1916, 18pm2.61i 182 . . . 4 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅)
204, 19eqtr4d 2773 . . 3 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴))
213, 20pm2.61i 182 . 2 ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴)
222, 21eqtri 2758 1 (Funpart𝐹𝐴) = (𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2108  ∃!weu 2567  Vcvv 3459  cin 3925  c0 4308  {csn 4601  cop 4607   class class class wbr 5119   × cxp 5652  dom cdm 5654  cres 5656  cima 5657  ccom 5658  cfv 6531  Singletoncsingle 35856   Singletons csingles 35857  Imagecimage 35858  Funpartcfunpart 35867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-symdif 4228  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-eprel 5553  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-1st 7988  df-2nd 7989  df-txp 35872  df-singleton 35880  df-singles 35881  df-image 35882  df-funpart 35892
This theorem is referenced by:  fullfunfv  35965
  Copyright terms: Public domain W3C validator