Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartfv Structured version   Visualization version   GIF version

Theorem funpartfv 35221
Description: The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funpartfv (Funpart𝐹𝐴) = (𝐹𝐴)

Proof of Theorem funpartfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-funpart 35150 . . 3 Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
21fveq1i 6891 . 2 (Funpart𝐹𝐴) = ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴)
3 fvres 6909 . . 3 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴))
4 nfvres 6931 . . . 4 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = ∅)
5 funpartlem 35218 . . . . . . . . 9 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
6 eusn 4733 . . . . . . . . 9 (∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
75, 6bitr4i 277 . . . . . . . 8 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}))
8 elimasng 6086 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
98elvd 3479 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
10 df-br 5148 . . . . . . . . . 10 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
119, 10bitr4di 288 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
1211eubidv 2578 . . . . . . . 8 (𝐴 ∈ V → (∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}) ↔ ∃!𝑥 𝐴𝐹𝑥))
137, 12bitrid 282 . . . . . . 7 (𝐴 ∈ V → (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃!𝑥 𝐴𝐹𝑥))
1413notbid 317 . . . . . 6 (𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ¬ ∃!𝑥 𝐴𝐹𝑥))
15 tz6.12-2 6878 . . . . . 6 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
1614, 15syl6bi 252 . . . . 5 (𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅))
17 fvprc 6882 . . . . . 6 𝐴 ∈ V → (𝐹𝐴) = ∅)
1817a1d 25 . . . . 5 𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅))
1916, 18pm2.61i 182 . . . 4 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅)
204, 19eqtr4d 2773 . . 3 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴))
213, 20pm2.61i 182 . 2 ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴)
222, 21eqtri 2758 1 (Funpart𝐹𝐴) = (𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wex 1779  wcel 2104  ∃!weu 2560  Vcvv 3472  cin 3946  c0 4321  {csn 4627  cop 4633   class class class wbr 5147   × cxp 5673  dom cdm 5675  cres 5677  cima 5678  ccom 5679  cfv 6542  Singletoncsingle 35114   Singletons csingles 35115  Imagecimage 35116  Funpartcfunpart 35125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-symdif 4241  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-eprel 5579  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-1st 7977  df-2nd 7978  df-txp 35130  df-singleton 35138  df-singles 35139  df-image 35140  df-funpart 35150
This theorem is referenced by:  fullfunfv  35223
  Copyright terms: Public domain W3C validator