Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartfv Structured version   Visualization version   GIF version

Theorem funpartfv 35940
Description: The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funpartfv (Funpart𝐹𝐴) = (𝐹𝐴)

Proof of Theorem funpartfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-funpart 35869 . . 3 Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
21fveq1i 6862 . 2 (Funpart𝐹𝐴) = ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴)
3 fvres 6880 . . 3 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴))
4 nfvres 6902 . . . 4 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = ∅)
5 funpartlem 35937 . . . . . . . . 9 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
6 eusn 4697 . . . . . . . . 9 (∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
75, 6bitr4i 278 . . . . . . . 8 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}))
8 elimasng 6063 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
98elvd 3456 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
10 df-br 5111 . . . . . . . . . 10 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
119, 10bitr4di 289 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
1211eubidv 2580 . . . . . . . 8 (𝐴 ∈ V → (∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}) ↔ ∃!𝑥 𝐴𝐹𝑥))
137, 12bitrid 283 . . . . . . 7 (𝐴 ∈ V → (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃!𝑥 𝐴𝐹𝑥))
1413notbid 318 . . . . . 6 (𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ¬ ∃!𝑥 𝐴𝐹𝑥))
15 tz6.12-2 6849 . . . . . 6 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
1614, 15biimtrdi 253 . . . . 5 (𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅))
17 fvprc 6853 . . . . . 6 𝐴 ∈ V → (𝐹𝐴) = ∅)
1817a1d 25 . . . . 5 𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅))
1916, 18pm2.61i 182 . . . 4 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅)
204, 19eqtr4d 2768 . . 3 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴))
213, 20pm2.61i 182 . 2 ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴)
222, 21eqtri 2753 1 (Funpart𝐹𝐴) = (𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2562  Vcvv 3450  cin 3916  c0 4299  {csn 4592  cop 4598   class class class wbr 5110   × cxp 5639  dom cdm 5641  cres 5643  cima 5644  ccom 5645  cfv 6514  Singletoncsingle 35833   Singletons csingles 35834  Imagecimage 35835  Funpartcfunpart 35844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-symdif 4219  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-2nd 7972  df-txp 35849  df-singleton 35857  df-singles 35858  df-image 35859  df-funpart 35869
This theorem is referenced by:  fullfunfv  35942
  Copyright terms: Public domain W3C validator