Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartfv Structured version   Visualization version   GIF version

Theorem funpartfv 33514
 Description: The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funpartfv (Funpart𝐹𝐴) = (𝐹𝐴)

Proof of Theorem funpartfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-funpart 33443 . . 3 Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
21fveq1i 6650 . 2 (Funpart𝐹𝐴) = ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴)
3 fvres 6668 . . 3 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴))
4 nfvres 6685 . . . 4 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = ∅)
5 funpartlem 33511 . . . . . . . . 9 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
6 eusn 4629 . . . . . . . . 9 (∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
75, 6bitr4i 281 . . . . . . . 8 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}))
8 elimasng 5926 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
98elvd 3450 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
10 df-br 5034 . . . . . . . . . 10 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
119, 10syl6bbr 292 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
1211eubidv 2650 . . . . . . . 8 (𝐴 ∈ V → (∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}) ↔ ∃!𝑥 𝐴𝐹𝑥))
137, 12syl5bb 286 . . . . . . 7 (𝐴 ∈ V → (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃!𝑥 𝐴𝐹𝑥))
1413notbid 321 . . . . . 6 (𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ¬ ∃!𝑥 𝐴𝐹𝑥))
15 tz6.12-2 6639 . . . . . 6 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
1614, 15syl6bi 256 . . . . 5 (𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅))
17 fvprc 6642 . . . . . 6 𝐴 ∈ V → (𝐹𝐴) = ∅)
1817a1d 25 . . . . 5 𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅))
1916, 18pm2.61i 185 . . . 4 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅)
204, 19eqtr4d 2839 . . 3 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴))
213, 20pm2.61i 185 . 2 ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴)
222, 21eqtri 2824 1 (Funpart𝐹𝐴) = (𝐹𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   = wceq 1538  ∃wex 1781   ∈ wcel 2112  ∃!weu 2631  Vcvv 3444   ∩ cin 3883  ∅c0 4246  {csn 4528  ⟨cop 4534   class class class wbr 5033   × cxp 5521  dom cdm 5523   ↾ cres 5525   “ cima 5526   ∘ ccom 5527  ‘cfv 6328  Singletoncsingle 33407   Singletons csingles 33408  Imagecimage 33409  Funpartcfunpart 33418 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-symdif 4172  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-eprel 5433  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fo 6334  df-fv 6336  df-1st 7675  df-2nd 7676  df-txp 33423  df-singleton 33431  df-singles 33432  df-image 33433  df-funpart 33443 This theorem is referenced by:  fullfunfv  33516
 Copyright terms: Public domain W3C validator