Detailed syntax breakdown of Definition df-fwddifn
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cfwddifn 36162 | . 2
class 
△n | 
| 2 |  | vn | . . 3
setvar 𝑛 | 
| 3 |  | vf | . . 3
setvar 𝑓 | 
| 4 |  | cn0 12528 | . . 3
class
ℕ0 | 
| 5 |  | cc 11154 | . . . 4
class
ℂ | 
| 6 |  | cpm 8868 | . . . 4
class 
↑pm | 
| 7 | 5, 5, 6 | co 7432 | . . 3
class (ℂ
↑pm ℂ) | 
| 8 |  | vx | . . . 4
setvar 𝑥 | 
| 9 |  | vy | . . . . . . . . 9
setvar 𝑦 | 
| 10 | 9 | cv 1538 | . . . . . . . 8
class 𝑦 | 
| 11 |  | vk | . . . . . . . . 9
setvar 𝑘 | 
| 12 | 11 | cv 1538 | . . . . . . . 8
class 𝑘 | 
| 13 |  | caddc 11159 | . . . . . . . 8
class 
+ | 
| 14 | 10, 12, 13 | co 7432 | . . . . . . 7
class (𝑦 + 𝑘) | 
| 15 | 3 | cv 1538 | . . . . . . . 8
class 𝑓 | 
| 16 | 15 | cdm 5684 | . . . . . . 7
class dom 𝑓 | 
| 17 | 14, 16 | wcel 2107 | . . . . . 6
wff (𝑦 + 𝑘) ∈ dom 𝑓 | 
| 18 |  | cc0 11156 | . . . . . . 7
class
0 | 
| 19 | 2 | cv 1538 | . . . . . . 7
class 𝑛 | 
| 20 |  | cfz 13548 | . . . . . . 7
class
... | 
| 21 | 18, 19, 20 | co 7432 | . . . . . 6
class
(0...𝑛) | 
| 22 | 17, 11, 21 | wral 3060 | . . . . 5
wff
∀𝑘 ∈
(0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓 | 
| 23 | 22, 9, 5 | crab 3435 | . . . 4
class {𝑦 ∈ ℂ ∣
∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} | 
| 24 |  | cbc 14342 | . . . . . . 7
class
C | 
| 25 | 19, 12, 24 | co 7432 | . . . . . 6
class (𝑛C𝑘) | 
| 26 |  | c1 11157 | . . . . . . . . 9
class
1 | 
| 27 | 26 | cneg 11494 | . . . . . . . 8
class
-1 | 
| 28 |  | cmin 11493 | . . . . . . . . 9
class 
− | 
| 29 | 19, 12, 28 | co 7432 | . . . . . . . 8
class (𝑛 − 𝑘) | 
| 30 |  | cexp 14103 | . . . . . . . 8
class
↑ | 
| 31 | 27, 29, 30 | co 7432 | . . . . . . 7
class
(-1↑(𝑛 −
𝑘)) | 
| 32 | 8 | cv 1538 | . . . . . . . . 9
class 𝑥 | 
| 33 | 32, 12, 13 | co 7432 | . . . . . . . 8
class (𝑥 + 𝑘) | 
| 34 | 33, 15 | cfv 6560 | . . . . . . 7
class (𝑓‘(𝑥 + 𝑘)) | 
| 35 |  | cmul 11161 | . . . . . . 7
class 
· | 
| 36 | 31, 34, 35 | co 7432 | . . . . . 6
class
((-1↑(𝑛 −
𝑘)) · (𝑓‘(𝑥 + 𝑘))) | 
| 37 | 25, 36, 35 | co 7432 | . . . . 5
class ((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))) | 
| 38 | 21, 37, 11 | csu 15723 | . . . 4
class
Σ𝑘 ∈
(0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))) | 
| 39 | 8, 23, 38 | cmpt 5224 | . . 3
class (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘))))) | 
| 40 | 2, 3, 4, 7, 39 | cmpo 7434 | . 2
class (𝑛 ∈ ℕ0,
𝑓 ∈ (ℂ
↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))))) | 
| 41 | 1, 40 | wceq 1539 | 1
wff 
△n = (𝑛
∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ)
↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣
∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))))) |