Detailed syntax breakdown of Definition df-fwddifn
| Step | Hyp | Ref
| Expression |
| 1 | | cfwddifn 36183 |
. 2
class
△n |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | vf |
. . 3
setvar 𝑓 |
| 4 | | cn0 12506 |
. . 3
class
ℕ0 |
| 5 | | cc 11132 |
. . . 4
class
ℂ |
| 6 | | cpm 8846 |
. . . 4
class
↑pm |
| 7 | 5, 5, 6 | co 7410 |
. . 3
class (ℂ
↑pm ℂ) |
| 8 | | vx |
. . . 4
setvar 𝑥 |
| 9 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 10 | 9 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 11 | | vk |
. . . . . . . . 9
setvar 𝑘 |
| 12 | 11 | cv 1539 |
. . . . . . . 8
class 𝑘 |
| 13 | | caddc 11137 |
. . . . . . . 8
class
+ |
| 14 | 10, 12, 13 | co 7410 |
. . . . . . 7
class (𝑦 + 𝑘) |
| 15 | 3 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 16 | 15 | cdm 5659 |
. . . . . . 7
class dom 𝑓 |
| 17 | 14, 16 | wcel 2109 |
. . . . . 6
wff (𝑦 + 𝑘) ∈ dom 𝑓 |
| 18 | | cc0 11134 |
. . . . . . 7
class
0 |
| 19 | 2 | cv 1539 |
. . . . . . 7
class 𝑛 |
| 20 | | cfz 13529 |
. . . . . . 7
class
... |
| 21 | 18, 19, 20 | co 7410 |
. . . . . 6
class
(0...𝑛) |
| 22 | 17, 11, 21 | wral 3052 |
. . . . 5
wff
∀𝑘 ∈
(0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓 |
| 23 | 22, 9, 5 | crab 3420 |
. . . 4
class {𝑦 ∈ ℂ ∣
∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} |
| 24 | | cbc 14325 |
. . . . . . 7
class
C |
| 25 | 19, 12, 24 | co 7410 |
. . . . . 6
class (𝑛C𝑘) |
| 26 | | c1 11135 |
. . . . . . . . 9
class
1 |
| 27 | 26 | cneg 11472 |
. . . . . . . 8
class
-1 |
| 28 | | cmin 11471 |
. . . . . . . . 9
class
− |
| 29 | 19, 12, 28 | co 7410 |
. . . . . . . 8
class (𝑛 − 𝑘) |
| 30 | | cexp 14084 |
. . . . . . . 8
class
↑ |
| 31 | 27, 29, 30 | co 7410 |
. . . . . . 7
class
(-1↑(𝑛 −
𝑘)) |
| 32 | 8 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 33 | 32, 12, 13 | co 7410 |
. . . . . . . 8
class (𝑥 + 𝑘) |
| 34 | 33, 15 | cfv 6536 |
. . . . . . 7
class (𝑓‘(𝑥 + 𝑘)) |
| 35 | | cmul 11139 |
. . . . . . 7
class
· |
| 36 | 31, 34, 35 | co 7410 |
. . . . . 6
class
((-1↑(𝑛 −
𝑘)) · (𝑓‘(𝑥 + 𝑘))) |
| 37 | 25, 36, 35 | co 7410 |
. . . . 5
class ((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))) |
| 38 | 21, 37, 11 | csu 15707 |
. . . 4
class
Σ𝑘 ∈
(0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))) |
| 39 | 8, 23, 38 | cmpt 5206 |
. . 3
class (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘))))) |
| 40 | 2, 3, 4, 7, 39 | cmpo 7412 |
. 2
class (𝑛 ∈ ℕ0,
𝑓 ∈ (ℂ
↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))))) |
| 41 | 1, 40 | wceq 1540 |
1
wff
△n = (𝑛
∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ)
↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣
∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))))) |