| Step | Hyp | Ref
| Expression |
| 1 | | df-fwddifn 36184 |
. . . 4
⊢
△n = (𝑛
∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ)
↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣
∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))))) |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → △n =
(𝑛 ∈
ℕ0, 𝑓
∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘))))))) |
| 3 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) |
| 4 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → (0...𝑛) = (0...𝑁)) |
| 5 | | dmeq 5888 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
| 6 | 5 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹)) |
| 7 | 6 | adantl 481 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹)) |
| 8 | 4, 7 | raleqbidv 3329 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → (∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓 ↔ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹)) |
| 9 | 8 | rabbidv 3428 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} = {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹}) |
| 10 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘)) |
| 11 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → (𝑛C𝑘) = (𝑁C𝑘)) |
| 12 | | oveq1 7417 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (𝑛 − 𝑘) = (𝑁 − 𝑘)) |
| 13 | 12 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (-1↑(𝑛 − 𝑘)) = (-1↑(𝑁 − 𝑘))) |
| 14 | | fveq1 6880 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑘)) = (𝐹‘(𝑥 + 𝑘))) |
| 15 | 13, 14 | oveqan12d 7429 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘))) = ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))) |
| 16 | 11, 15 | oveq12d 7428 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → ((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))))) |
| 17 | 16 | adantr 480 |
. . . . . 6
⊢ (((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))))) |
| 18 | 4, 17 | sumeq12dv 15727 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))))) |
| 19 | 9, 18 | mpteq12dv 5212 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))))) |
| 20 | 19 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑓 = 𝐹)) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))))) |
| 21 | | fwddifnval.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 22 | | fwddifnval.3 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 23 | | fwddifnval.2 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 24 | | cnex 11215 |
. . . . 5
⊢ ℂ
∈ V |
| 25 | | elpm2r 8864 |
. . . . 5
⊢
(((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm
ℂ)) |
| 26 | 24, 24, 25 | mpanl12 702 |
. . . 4
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm
ℂ)) |
| 27 | 22, 23, 26 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℂ)) |
| 28 | 24 | mptrabex 7222 |
. . . 4
⊢ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V |
| 29 | 28 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V) |
| 30 | 2, 20, 21, 27, 29 | ovmpod 7564 |
. 2
⊢ (𝜑 → (𝑁 △n 𝐹) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))))) |
| 31 | | fvoveq1 7433 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑘)) = (𝐹‘(𝑋 + 𝑘))) |
| 32 | 31 | oveq2d 7426 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))) = ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) |
| 33 | 32 | oveq2d 7426 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |
| 34 | 33 | sumeq2sdv 15724 |
. . 3
⊢ (𝑥 = 𝑋 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |
| 35 | 34 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |
| 36 | | fwddifnval.4 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 37 | | fwddifnval.5 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴) |
| 38 | 22 | fdmd 6721 |
. . . . . 6
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 39 | 38 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → dom 𝐹 = 𝐴) |
| 40 | 37, 39 | eleqtrrd 2838 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ dom 𝐹) |
| 41 | 40 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹) |
| 42 | | oveq1 7417 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (𝑦 + 𝑘) = (𝑋 + 𝑘)) |
| 43 | 42 | eleq1d 2820 |
. . . . 5
⊢ (𝑦 = 𝑋 → ((𝑦 + 𝑘) ∈ dom 𝐹 ↔ (𝑋 + 𝑘) ∈ dom 𝐹)) |
| 44 | 43 | ralbidv 3164 |
. . . 4
⊢ (𝑦 = 𝑋 → (∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹 ↔ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹)) |
| 45 | 44 | elrab 3676 |
. . 3
⊢ (𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↔ (𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹)) |
| 46 | 36, 41, 45 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹}) |
| 47 | | sumex 15709 |
. . 3
⊢
Σ𝑘 ∈
(0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V |
| 48 | 47 | a1i 11 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V) |
| 49 | 30, 35, 46, 48 | fvmptd 6998 |
1
⊢ (𝜑 → ((𝑁 △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |