Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifnval Structured version   Visualization version   GIF version

Theorem fwddifnval 36230
Description: The value of the forward difference operator at a point. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifnval.1 (𝜑𝑁 ∈ ℕ0)
fwddifnval.2 (𝜑𝐴 ⊆ ℂ)
fwddifnval.3 (𝜑𝐹:𝐴⟶ℂ)
fwddifnval.4 (𝜑𝑋 ∈ ℂ)
fwddifnval.5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴)
Assertion
Ref Expression
fwddifnval (𝜑 → ((𝑁n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
Distinct variable groups:   𝑘,𝑁   𝐴,𝑘   𝑘,𝑋   𝑘,𝐹   𝜑,𝑘

Proof of Theorem fwddifnval
Dummy variables 𝑛 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fwddifn 36228 . . . 4 n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))))
21a1i 11 . . 3 (𝜑 → △n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))))))
3 oveq2 7362 . . . . . . . 8 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
43adantr 480 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → (0...𝑛) = (0...𝑁))
5 dmeq 5849 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
65eleq2d 2819 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹))
76adantl 481 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹))
84, 7raleqbidv 3313 . . . . . 6 ((𝑛 = 𝑁𝑓 = 𝐹) → (∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓 ↔ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹))
98rabbidv 3403 . . . . 5 ((𝑛 = 𝑁𝑓 = 𝐹) → {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} = {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹})
10 oveq1 7361 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘))
1110adantr 480 . . . . . . . 8 ((𝑛 = 𝑁𝑓 = 𝐹) → (𝑛C𝑘) = (𝑁C𝑘))
12 oveq1 7361 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
1312oveq2d 7370 . . . . . . . . 9 (𝑛 = 𝑁 → (-1↑(𝑛𝑘)) = (-1↑(𝑁𝑘)))
14 fveq1 6829 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑘)) = (𝐹‘(𝑥 + 𝑘)))
1513, 14oveqan12d 7373 . . . . . . . 8 ((𝑛 = 𝑁𝑓 = 𝐹) → ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))) = ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))
1611, 15oveq12d 7372 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → ((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
1716adantr 480 . . . . . 6 (((𝑛 = 𝑁𝑓 = 𝐹) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
184, 17sumeq12dv 15617 . . . . 5 ((𝑛 = 𝑁𝑓 = 𝐹) → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
199, 18mpteq12dv 5182 . . . 4 ((𝑛 = 𝑁𝑓 = 𝐹) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
2019adantl 481 . . 3 ((𝜑 ∧ (𝑛 = 𝑁𝑓 = 𝐹)) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
21 fwddifnval.1 . . 3 (𝜑𝑁 ∈ ℕ0)
22 fwddifnval.3 . . . 4 (𝜑𝐹:𝐴⟶ℂ)
23 fwddifnval.2 . . . 4 (𝜑𝐴 ⊆ ℂ)
24 cnex 11096 . . . . 5 ℂ ∈ V
25 elpm2r 8777 . . . . 5 (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ))
2624, 24, 25mpanl12 702 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
2722, 23, 26syl2anc 584 . . 3 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
2824mptrabex 7167 . . . 4 (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V
2928a1i 11 . . 3 (𝜑 → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V)
302, 20, 21, 27, 29ovmpod 7506 . 2 (𝜑 → (𝑁n 𝐹) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
31 fvoveq1 7377 . . . . . 6 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑘)) = (𝐹‘(𝑋 + 𝑘)))
3231oveq2d 7370 . . . . 5 (𝑥 = 𝑋 → ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))) = ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))
3332oveq2d 7370 . . . 4 (𝑥 = 𝑋 → ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
3433sumeq2sdv 15614 . . 3 (𝑥 = 𝑋 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
3534adantl 481 . 2 ((𝜑𝑥 = 𝑋) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
36 fwddifnval.4 . . 3 (𝜑𝑋 ∈ ℂ)
37 fwddifnval.5 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴)
3822fdmd 6668 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
3938adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → dom 𝐹 = 𝐴)
4037, 39eleqtrrd 2836 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ dom 𝐹)
4140ralrimiva 3125 . . 3 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹)
42 oveq1 7361 . . . . . 6 (𝑦 = 𝑋 → (𝑦 + 𝑘) = (𝑋 + 𝑘))
4342eleq1d 2818 . . . . 5 (𝑦 = 𝑋 → ((𝑦 + 𝑘) ∈ dom 𝐹 ↔ (𝑋 + 𝑘) ∈ dom 𝐹))
4443ralbidv 3156 . . . 4 (𝑦 = 𝑋 → (∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹 ↔ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹))
4544elrab 3643 . . 3 (𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↔ (𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹))
4636, 41, 45sylanbrc 583 . 2 (𝜑𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹})
47 sumex 15599 . . 3 Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V
4847a1i 11 . 2 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V)
4930, 35, 46, 48fvmptd 6944 1 (𝜑 → ((𝑁n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437  wss 3898  cmpt 5176  dom cdm 5621  wf 6484  cfv 6488  (class class class)co 7354  cmpo 7356  pm cpm 8759  cc 11013  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020  cmin 11353  -cneg 11354  0cn0 12390  ...cfz 13411  cexp 13972  Ccbc 14213  Σcsu 15597  n cfwddifn 36227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-seq 13913  df-sum 15598  df-fwddifn 36228
This theorem is referenced by:  fwddifn0  36231  fwddifnp1  36232
  Copyright terms: Public domain W3C validator