Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifnval Structured version   Visualization version   GIF version

Theorem fwddifnval 36186
Description: The value of the forward difference operator at a point. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifnval.1 (𝜑𝑁 ∈ ℕ0)
fwddifnval.2 (𝜑𝐴 ⊆ ℂ)
fwddifnval.3 (𝜑𝐹:𝐴⟶ℂ)
fwddifnval.4 (𝜑𝑋 ∈ ℂ)
fwddifnval.5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴)
Assertion
Ref Expression
fwddifnval (𝜑 → ((𝑁n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
Distinct variable groups:   𝑘,𝑁   𝐴,𝑘   𝑘,𝑋   𝑘,𝐹   𝜑,𝑘

Proof of Theorem fwddifnval
Dummy variables 𝑛 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fwddifn 36184 . . . 4 n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))))
21a1i 11 . . 3 (𝜑 → △n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))))))
3 oveq2 7418 . . . . . . . 8 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
43adantr 480 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → (0...𝑛) = (0...𝑁))
5 dmeq 5888 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
65eleq2d 2821 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹))
76adantl 481 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹))
84, 7raleqbidv 3329 . . . . . 6 ((𝑛 = 𝑁𝑓 = 𝐹) → (∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓 ↔ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹))
98rabbidv 3428 . . . . 5 ((𝑛 = 𝑁𝑓 = 𝐹) → {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} = {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹})
10 oveq1 7417 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘))
1110adantr 480 . . . . . . . 8 ((𝑛 = 𝑁𝑓 = 𝐹) → (𝑛C𝑘) = (𝑁C𝑘))
12 oveq1 7417 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
1312oveq2d 7426 . . . . . . . . 9 (𝑛 = 𝑁 → (-1↑(𝑛𝑘)) = (-1↑(𝑁𝑘)))
14 fveq1 6880 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑘)) = (𝐹‘(𝑥 + 𝑘)))
1513, 14oveqan12d 7429 . . . . . . . 8 ((𝑛 = 𝑁𝑓 = 𝐹) → ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))) = ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))
1611, 15oveq12d 7428 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → ((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
1716adantr 480 . . . . . 6 (((𝑛 = 𝑁𝑓 = 𝐹) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
184, 17sumeq12dv 15727 . . . . 5 ((𝑛 = 𝑁𝑓 = 𝐹) → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
199, 18mpteq12dv 5212 . . . 4 ((𝑛 = 𝑁𝑓 = 𝐹) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
2019adantl 481 . . 3 ((𝜑 ∧ (𝑛 = 𝑁𝑓 = 𝐹)) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
21 fwddifnval.1 . . 3 (𝜑𝑁 ∈ ℕ0)
22 fwddifnval.3 . . . 4 (𝜑𝐹:𝐴⟶ℂ)
23 fwddifnval.2 . . . 4 (𝜑𝐴 ⊆ ℂ)
24 cnex 11215 . . . . 5 ℂ ∈ V
25 elpm2r 8864 . . . . 5 (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ))
2624, 24, 25mpanl12 702 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
2722, 23, 26syl2anc 584 . . 3 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
2824mptrabex 7222 . . . 4 (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V
2928a1i 11 . . 3 (𝜑 → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V)
302, 20, 21, 27, 29ovmpod 7564 . 2 (𝜑 → (𝑁n 𝐹) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
31 fvoveq1 7433 . . . . . 6 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑘)) = (𝐹‘(𝑋 + 𝑘)))
3231oveq2d 7426 . . . . 5 (𝑥 = 𝑋 → ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))) = ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))
3332oveq2d 7426 . . . 4 (𝑥 = 𝑋 → ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
3433sumeq2sdv 15724 . . 3 (𝑥 = 𝑋 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
3534adantl 481 . 2 ((𝜑𝑥 = 𝑋) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
36 fwddifnval.4 . . 3 (𝜑𝑋 ∈ ℂ)
37 fwddifnval.5 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴)
3822fdmd 6721 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
3938adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → dom 𝐹 = 𝐴)
4037, 39eleqtrrd 2838 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ dom 𝐹)
4140ralrimiva 3133 . . 3 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹)
42 oveq1 7417 . . . . . 6 (𝑦 = 𝑋 → (𝑦 + 𝑘) = (𝑋 + 𝑘))
4342eleq1d 2820 . . . . 5 (𝑦 = 𝑋 → ((𝑦 + 𝑘) ∈ dom 𝐹 ↔ (𝑋 + 𝑘) ∈ dom 𝐹))
4443ralbidv 3164 . . . 4 (𝑦 = 𝑋 → (∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹 ↔ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹))
4544elrab 3676 . . 3 (𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↔ (𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹))
4636, 41, 45sylanbrc 583 . 2 (𝜑𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹})
47 sumex 15709 . . 3 Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V
4847a1i 11 . 2 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V)
4930, 35, 46, 48fvmptd 6998 1 (𝜑 → ((𝑁n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  wss 3931  cmpt 5206  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  pm cpm 8846  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cmin 11471  -cneg 11472  0cn0 12506  ...cfz 13529  cexp 14084  Ccbc 14325  Σcsu 15707  n cfwddifn 36183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025  df-sum 15708  df-fwddifn 36184
This theorem is referenced by:  fwddifn0  36187  fwddifnp1  36188
  Copyright terms: Public domain W3C validator