Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifnval Structured version   Visualization version   GIF version

Theorem fwddifnval 34392
Description: The value of the forward difference operator at a point. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifnval.1 (𝜑𝑁 ∈ ℕ0)
fwddifnval.2 (𝜑𝐴 ⊆ ℂ)
fwddifnval.3 (𝜑𝐹:𝐴⟶ℂ)
fwddifnval.4 (𝜑𝑋 ∈ ℂ)
fwddifnval.5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴)
Assertion
Ref Expression
fwddifnval (𝜑 → ((𝑁n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
Distinct variable groups:   𝑘,𝑁   𝐴,𝑘   𝑘,𝑋   𝑘,𝐹   𝜑,𝑘

Proof of Theorem fwddifnval
Dummy variables 𝑛 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fwddifn 34390 . . . 4 n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))))
21a1i 11 . . 3 (𝜑 → △n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))))))
3 oveq2 7263 . . . . . . . 8 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
43adantr 480 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → (0...𝑛) = (0...𝑁))
5 dmeq 5801 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
65eleq2d 2824 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹))
76adantl 481 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹))
84, 7raleqbidv 3327 . . . . . 6 ((𝑛 = 𝑁𝑓 = 𝐹) → (∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓 ↔ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹))
98rabbidv 3404 . . . . 5 ((𝑛 = 𝑁𝑓 = 𝐹) → {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} = {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹})
10 oveq1 7262 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘))
1110adantr 480 . . . . . . . 8 ((𝑛 = 𝑁𝑓 = 𝐹) → (𝑛C𝑘) = (𝑁C𝑘))
12 oveq1 7262 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
1312oveq2d 7271 . . . . . . . . 9 (𝑛 = 𝑁 → (-1↑(𝑛𝑘)) = (-1↑(𝑁𝑘)))
14 fveq1 6755 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑘)) = (𝐹‘(𝑥 + 𝑘)))
1513, 14oveqan12d 7274 . . . . . . . 8 ((𝑛 = 𝑁𝑓 = 𝐹) → ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))) = ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))
1611, 15oveq12d 7273 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → ((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
1716adantr 480 . . . . . 6 (((𝑛 = 𝑁𝑓 = 𝐹) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
184, 17sumeq12dv 15346 . . . . 5 ((𝑛 = 𝑁𝑓 = 𝐹) → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
199, 18mpteq12dv 5161 . . . 4 ((𝑛 = 𝑁𝑓 = 𝐹) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
2019adantl 481 . . 3 ((𝜑 ∧ (𝑛 = 𝑁𝑓 = 𝐹)) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
21 fwddifnval.1 . . 3 (𝜑𝑁 ∈ ℕ0)
22 fwddifnval.3 . . . 4 (𝜑𝐹:𝐴⟶ℂ)
23 fwddifnval.2 . . . 4 (𝜑𝐴 ⊆ ℂ)
24 cnex 10883 . . . . 5 ℂ ∈ V
25 elpm2r 8591 . . . . 5 (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ))
2624, 24, 25mpanl12 698 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
2722, 23, 26syl2anc 583 . . 3 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
2824mptrabex 7083 . . . 4 (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V
2928a1i 11 . . 3 (𝜑 → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V)
302, 20, 21, 27, 29ovmpod 7403 . 2 (𝜑 → (𝑁n 𝐹) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
31 fvoveq1 7278 . . . . . 6 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑘)) = (𝐹‘(𝑋 + 𝑘)))
3231oveq2d 7271 . . . . 5 (𝑥 = 𝑋 → ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))) = ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))
3332oveq2d 7271 . . . 4 (𝑥 = 𝑋 → ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
3433sumeq2sdv 15344 . . 3 (𝑥 = 𝑋 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
3534adantl 481 . 2 ((𝜑𝑥 = 𝑋) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
36 fwddifnval.4 . . 3 (𝜑𝑋 ∈ ℂ)
37 fwddifnval.5 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴)
3822fdmd 6595 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
3938adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → dom 𝐹 = 𝐴)
4037, 39eleqtrrd 2842 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ dom 𝐹)
4140ralrimiva 3107 . . 3 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹)
42 oveq1 7262 . . . . . 6 (𝑦 = 𝑋 → (𝑦 + 𝑘) = (𝑋 + 𝑘))
4342eleq1d 2823 . . . . 5 (𝑦 = 𝑋 → ((𝑦 + 𝑘) ∈ dom 𝐹 ↔ (𝑋 + 𝑘) ∈ dom 𝐹))
4443ralbidv 3120 . . . 4 (𝑦 = 𝑋 → (∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹 ↔ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹))
4544elrab 3617 . . 3 (𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↔ (𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹))
4636, 41, 45sylanbrc 582 . 2 (𝜑𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹})
47 sumex 15327 . . 3 Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V
4847a1i 11 . 2 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V)
4930, 35, 46, 48fvmptd 6864 1 (𝜑 → ((𝑁n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  pm cpm 8574  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136  0cn0 12163  ...cfz 13168  cexp 13710  Ccbc 13944  Σcsu 15325  n cfwddifn 34389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-sum 15326  df-fwddifn 34390
This theorem is referenced by:  fwddifn0  34393  fwddifnp1  34394
  Copyright terms: Public domain W3C validator