Step | Hyp | Ref
| Expression |
1 | | df-fwddifn 34463 |
. . . 4
⊢
△n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ
↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))))) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → △n =
(𝑛 ∈
ℕ0, 𝑓
∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘))))))) |
3 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) |
4 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → (0...𝑛) = (0...𝑁)) |
5 | | dmeq 5812 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
6 | 5 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹)) |
7 | 6 | adantl 482 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹)) |
8 | 4, 7 | raleqbidv 3336 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → (∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓 ↔ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹)) |
9 | 8 | rabbidv 3414 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} = {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹}) |
10 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘)) |
11 | 10 | adantr 481 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → (𝑛C𝑘) = (𝑁C𝑘)) |
12 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (𝑛 − 𝑘) = (𝑁 − 𝑘)) |
13 | 12 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (-1↑(𝑛 − 𝑘)) = (-1↑(𝑁 − 𝑘))) |
14 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑘)) = (𝐹‘(𝑥 + 𝑘))) |
15 | 13, 14 | oveqan12d 7294 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘))) = ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))) |
16 | 11, 15 | oveq12d 7293 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → ((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))))) |
17 | 16 | adantr 481 |
. . . . . 6
⊢ (((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))))) |
18 | 4, 17 | sumeq12dv 15418 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))))) |
19 | 9, 18 | mpteq12dv 5165 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑓 = 𝐹) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))))) |
20 | 19 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑓 = 𝐹)) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))))) |
21 | | fwddifnval.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
22 | | fwddifnval.3 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
23 | | fwddifnval.2 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
24 | | cnex 10952 |
. . . . 5
⊢ ℂ
∈ V |
25 | | elpm2r 8633 |
. . . . 5
⊢
(((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm
ℂ)) |
26 | 24, 24, 25 | mpanl12 699 |
. . . 4
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm
ℂ)) |
27 | 22, 23, 26 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℂ)) |
28 | 24 | mptrabex 7101 |
. . . 4
⊢ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V |
29 | 28 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V) |
30 | 2, 20, 21, 27, 29 | ovmpod 7425 |
. 2
⊢ (𝜑 → (𝑁 △n 𝐹) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))))) |
31 | | fvoveq1 7298 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑘)) = (𝐹‘(𝑋 + 𝑘))) |
32 | 31 | oveq2d 7291 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘))) = ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) |
33 | 32 | oveq2d 7291 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |
34 | 33 | sumeq2sdv 15416 |
. . 3
⊢ (𝑥 = 𝑋 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |
35 | 34 | adantl 482 |
. 2
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |
36 | | fwddifnval.4 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℂ) |
37 | | fwddifnval.5 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴) |
38 | 22 | fdmd 6611 |
. . . . . 6
⊢ (𝜑 → dom 𝐹 = 𝐴) |
39 | 38 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → dom 𝐹 = 𝐴) |
40 | 37, 39 | eleqtrrd 2842 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ dom 𝐹) |
41 | 40 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹) |
42 | | oveq1 7282 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (𝑦 + 𝑘) = (𝑋 + 𝑘)) |
43 | 42 | eleq1d 2823 |
. . . . 5
⊢ (𝑦 = 𝑋 → ((𝑦 + 𝑘) ∈ dom 𝐹 ↔ (𝑋 + 𝑘) ∈ dom 𝐹)) |
44 | 43 | ralbidv 3112 |
. . . 4
⊢ (𝑦 = 𝑋 → (∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹 ↔ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹)) |
45 | 44 | elrab 3624 |
. . 3
⊢ (𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↔ (𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹)) |
46 | 36, 41, 45 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹}) |
47 | | sumex 15399 |
. . 3
⊢
Σ𝑘 ∈
(0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V |
48 | 47 | a1i 11 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V) |
49 | 30, 35, 46, 48 | fvmptd 6882 |
1
⊢ (𝜑 → ((𝑁 △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |