Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isgbo | Structured version Visualization version GIF version |
Description: The predicate "is an odd Goldbach number". An odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as sum of three odd primes. (Contributed by AV, 26-Jul-2020.) |
Ref | Expression |
---|---|
isgbo | ⊢ (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |
2 | 1 | anbi2d 632 | . . . 4 ⊢ (𝑧 = 𝑍 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) |
3 | 2 | rexbidv 3223 | . . 3 ⊢ (𝑧 = 𝑍 → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) |
4 | 3 | 2rexbidv 3226 | . 2 ⊢ (𝑧 = 𝑍 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) |
5 | df-gbo 44890 | . 2 ⊢ GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} | |
6 | 4, 5 | elrab2 3612 | 1 ⊢ (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ∃wrex 3063 (class class class)co 7222 + caddc 10745 ℙcprime 16241 Odd codd 44765 GoldbachOdd cgbo 44887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-ext 2709 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3068 df-rab 3071 df-v 3417 df-gbo 44890 |
This theorem is referenced by: gbogbow 44896 gboge9 44904 9gbo 44914 11gbo 44915 sbgoldbst 44918 nnsum4primesoddALTV 44937 bgoldbtbnd 44949 |
Copyright terms: Public domain | W3C validator |