![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-gric | Structured version Visualization version GIF version |
Description: Two graphs are said to be isomorphic iff they are connected by at least one isomorphism, see definition in [Diestel] p. 3 and definition in [Bollobas] p. 3. Isomorphic graphs share all global graph properties like order and size. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 19-Apr-2025.) |
Ref | Expression |
---|---|
df-gric | ⊢ ≃𝑔𝑟 = (◡ GraphIso “ (V ∖ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgric 47746 | . 2 class ≃𝑔𝑟 | |
2 | cgrim 47745 | . . . 4 class GraphIso | |
3 | 2 | ccnv 5699 | . . 3 class ◡ GraphIso |
4 | cvv 3488 | . . . 4 class V | |
5 | c1o 8515 | . . . 4 class 1o | |
6 | 4, 5 | cdif 3973 | . . 3 class (V ∖ 1o) |
7 | 3, 6 | cima 5703 | . 2 class (◡ GraphIso “ (V ∖ 1o)) |
8 | 1, 7 | wceq 1537 | 1 wff ≃𝑔𝑟 = (◡ GraphIso “ (V ∖ 1o)) |
Colors of variables: wff setvar class |
This definition is referenced by: brgric 47765 gricrel 47772 |
Copyright terms: Public domain | W3C validator |