Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gric Structured version   Visualization version   GIF version

Definition df-gric 47751
Description: Two graphs are said to be isomorphic iff they are connected by at least one isomorphism, see definition in [Diestel] p. 3 and definition in [Bollobas] p. 3. Isomorphic graphs share all global graph properties like order and size. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 19-Apr-2025.)
Assertion
Ref Expression
df-gric 𝑔𝑟 = ( GraphIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-gric
StepHypRef Expression
1 cgric 47746 . 2 class 𝑔𝑟
2 cgrim 47745 . . . 4 class GraphIso
32ccnv 5699 . . 3 class GraphIso
4 cvv 3488 . . . 4 class V
5 c1o 8515 . . . 4 class 1o
64, 5cdif 3973 . . 3 class (V ∖ 1o)
73, 6cima 5703 . 2 class ( GraphIso “ (V ∖ 1o))
81, 7wceq 1537 1 wff 𝑔𝑟 = ( GraphIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brgric  47765  gricrel  47772
  Copyright terms: Public domain W3C validator