| Step | Hyp | Ref
| Expression |
| 1 | | df-grim 47858 |
. . 3
⊢ GraphIso
= (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) |
| 2 | | elex 3485 |
. . . 4
⊢ (𝐺 ∈ 𝑋 → 𝐺 ∈ V) |
| 3 | 2 | 3ad2ant1 1133 |
. . 3
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → 𝐺 ∈ V) |
| 4 | | elex 3485 |
. . . 4
⊢ (𝐻 ∈ 𝑌 → 𝐻 ∈ V) |
| 5 | 4 | 3ad2ant2 1134 |
. . 3
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → 𝐻 ∈ V) |
| 6 | | f1of 6823 |
. . . . . . 7
⊢ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑓:(Vtx‘𝐺)⟶(Vtx‘𝐻)) |
| 7 | | fvex 6894 |
. . . . . . . 8
⊢
(Vtx‘𝐻) ∈
V |
| 8 | | fvex 6894 |
. . . . . . . 8
⊢
(Vtx‘𝐺) ∈
V |
| 9 | 7, 8 | elmap 8890 |
. . . . . . 7
⊢ (𝑓 ∈ ((Vtx‘𝐻) ↑m
(Vtx‘𝐺)) ↔ 𝑓:(Vtx‘𝐺)⟶(Vtx‘𝐻)) |
| 10 | 6, 9 | sylibr 234 |
. . . . . 6
⊢ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺))) |
| 11 | 10 | adantr 480 |
. . . . 5
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) → 𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺))) |
| 12 | | ovex 7443 |
. . . . 5
⊢
((Vtx‘𝐻)
↑m (Vtx‘𝐺)) ∈ V |
| 13 | 11, 12 | abex 5301 |
. . . 4
⊢ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ∈ V |
| 14 | 13 | a1i 11 |
. . 3
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ∈ V) |
| 15 | | eqidd 2737 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → 𝑓 = 𝑓) |
| 16 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
| 17 | 16 | adantr 480 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (Vtx‘𝑔) = (Vtx‘𝐺)) |
| 18 | | fveq2 6881 |
. . . . . . 7
⊢ (ℎ = 𝐻 → (Vtx‘ℎ) = (Vtx‘𝐻)) |
| 19 | 18 | adantl 481 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (Vtx‘ℎ) = (Vtx‘𝐻)) |
| 20 | 15, 17, 19 | f1oeq123d 6817 |
. . . . 5
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ↔ 𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))) |
| 21 | | fvexd 6896 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (iEdg‘𝑔) ∈ V) |
| 22 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) |
| 23 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (iEdg‘𝑔) = (iEdg‘𝐺)) |
| 24 | | fvexd 6896 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → (iEdg‘ℎ) ∈ V) |
| 25 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (ℎ = 𝐻 → (iEdg‘ℎ) = (iEdg‘𝐻)) |
| 26 | 25 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (iEdg‘ℎ) = (iEdg‘𝐻)) |
| 27 | 26 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → (iEdg‘ℎ) = (iEdg‘𝐻)) |
| 28 | | eqidd 2737 |
. . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → 𝑗 = 𝑗) |
| 29 | | dmeq 5888 |
. . . . . . . . . . . . 13
⊢ (𝑒 = (iEdg‘𝐺) → dom 𝑒 = dom (iEdg‘𝐺)) |
| 30 | 29 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → dom 𝑒 = dom (iEdg‘𝐺)) |
| 31 | | dmeq 5888 |
. . . . . . . . . . . . 13
⊢ (𝑑 = (iEdg‘𝐻) → dom 𝑑 = dom (iEdg‘𝐻)) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → dom 𝑑 = dom (iEdg‘𝐻)) |
| 33 | 28, 30, 32 | f1oeq123d 6817 |
. . . . . . . . . . 11
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → (𝑗:dom 𝑒–1-1-onto→dom
𝑑 ↔ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) |
| 34 | | fveq1 6880 |
. . . . . . . . . . . . 13
⊢ (𝑑 = (iEdg‘𝐻) → (𝑑‘(𝑗‘𝑖)) = ((iEdg‘𝐻)‘(𝑗‘𝑖))) |
| 35 | | fveq1 6880 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = (iEdg‘𝐺) → (𝑒‘𝑖) = ((iEdg‘𝐺)‘𝑖)) |
| 36 | 35 | imaeq2d 6052 |
. . . . . . . . . . . . 13
⊢ (𝑒 = (iEdg‘𝐺) → (𝑓 “ (𝑒‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) |
| 37 | 34, 36 | eqeqan12rd 2751 |
. . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) |
| 38 | 30, 37 | raleqbidv 3329 |
. . . . . . . . . . 11
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → (∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) |
| 39 | 33, 38 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
| 40 | 39 | adantll 714 |
. . . . . . . . 9
⊢ ((((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
| 41 | 24, 27, 40 | sbcied2 3815 |
. . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → ([(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
| 42 | 21, 23, 41 | sbcied2 3815 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ([(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
| 43 | | biidd 262 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
| 44 | 42, 43 | bitrd 279 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ([(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
| 45 | 44 | exbidv 1921 |
. . . . 5
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
| 46 | 20, 45 | anbi12d 632 |
. . . 4
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)))) ↔ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))) |
| 47 | 46 | abbidv 2802 |
. . 3
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))} = {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))}) |
| 48 | 1, 3, 5, 14, 47 | elovmpod 7656 |
. 2
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))})) |
| 49 | | id 22 |
. . . . . 6
⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) |
| 50 | | isgrim.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 51 | 50 | eqcomi 2745 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
𝑉 |
| 52 | 51 | a1i 11 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (Vtx‘𝐺) = 𝑉) |
| 53 | | isgrim.w |
. . . . . . . 8
⊢ 𝑊 = (Vtx‘𝐻) |
| 54 | 53 | eqcomi 2745 |
. . . . . . 7
⊢
(Vtx‘𝐻) =
𝑊 |
| 55 | 54 | a1i 11 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (Vtx‘𝐻) = 𝑊) |
| 56 | 49, 52, 55 | f1oeq123d 6817 |
. . . . 5
⊢ (𝑓 = 𝐹 → (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ↔ 𝐹:𝑉–1-1-onto→𝑊)) |
| 57 | | eqidd 2737 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → 𝑗 = 𝑗) |
| 58 | | isgrim.e |
. . . . . . . . . . 11
⊢ 𝐸 = (iEdg‘𝐺) |
| 59 | 58 | eqcomi 2745 |
. . . . . . . . . 10
⊢
(iEdg‘𝐺) =
𝐸 |
| 60 | 59 | dmeqi 5889 |
. . . . . . . . 9
⊢ dom
(iEdg‘𝐺) = dom 𝐸 |
| 61 | 60 | a1i 11 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → dom (iEdg‘𝐺) = dom 𝐸) |
| 62 | | isgrim.d |
. . . . . . . . . . 11
⊢ 𝐷 = (iEdg‘𝐻) |
| 63 | 62 | eqcomi 2745 |
. . . . . . . . . 10
⊢
(iEdg‘𝐻) =
𝐷 |
| 64 | 63 | dmeqi 5889 |
. . . . . . . . 9
⊢ dom
(iEdg‘𝐻) = dom 𝐷 |
| 65 | 64 | a1i 11 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → dom (iEdg‘𝐻) = dom 𝐷) |
| 66 | 57, 61, 65 | f1oeq123d 6817 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ↔ 𝑗:dom 𝐸–1-1-onto→dom
𝐷)) |
| 67 | 63 | fveq1i 6882 |
. . . . . . . . . 10
⊢
((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐷‘(𝑗‘𝑖)) |
| 68 | 67 | a1i 11 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐷‘(𝑗‘𝑖))) |
| 69 | 59 | fveq1i 6882 |
. . . . . . . . . . 11
⊢
((iEdg‘𝐺)‘𝑖) = (𝐸‘𝑖) |
| 70 | 69 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → ((iEdg‘𝐺)‘𝑖) = (𝐸‘𝑖)) |
| 71 | 49, 70 | imaeq12d 6053 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ (𝐸‘𝑖))) |
| 72 | 68, 71 | eqeq12d 2752 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)) ↔ (𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))) |
| 73 | 61, 72 | raleqbidv 3329 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))) |
| 74 | 66, 73 | anbi12d 632 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) |
| 75 | 74 | exbidv 1921 |
. . . . 5
⊢ (𝑓 = 𝐹 → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) |
| 76 | 56, 75 | anbi12d 632 |
. . . 4
⊢ (𝑓 = 𝐹 → ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |
| 77 | 76 | elabg 3660 |
. . 3
⊢ (𝐹 ∈ 𝑍 → (𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |
| 78 | 77 | 3ad2ant3 1135 |
. 2
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |
| 79 | 48, 78 | bitrd 279 |
1
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |