| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-grim 47864 | . . 3
⊢  GraphIso
= (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | 
| 2 |  | elex 3501 | . . . 4
⊢ (𝐺 ∈ 𝑋 → 𝐺 ∈ V) | 
| 3 | 2 | 3ad2ant1 1134 | . . 3
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → 𝐺 ∈ V) | 
| 4 |  | elex 3501 | . . . 4
⊢ (𝐻 ∈ 𝑌 → 𝐻 ∈ V) | 
| 5 | 4 | 3ad2ant2 1135 | . . 3
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → 𝐻 ∈ V) | 
| 6 |  | f1of 6848 | . . . . . . 7
⊢ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑓:(Vtx‘𝐺)⟶(Vtx‘𝐻)) | 
| 7 |  | fvex 6919 | . . . . . . . 8
⊢
(Vtx‘𝐻) ∈
V | 
| 8 |  | fvex 6919 | . . . . . . . 8
⊢
(Vtx‘𝐺) ∈
V | 
| 9 | 7, 8 | elmap 8911 | . . . . . . 7
⊢ (𝑓 ∈ ((Vtx‘𝐻) ↑m
(Vtx‘𝐺)) ↔ 𝑓:(Vtx‘𝐺)⟶(Vtx‘𝐻)) | 
| 10 | 6, 9 | sylibr 234 | . . . . . 6
⊢ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺))) | 
| 11 | 10 | adantr 480 | . . . . 5
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) → 𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺))) | 
| 12 |  | ovex 7464 | . . . . 5
⊢
((Vtx‘𝐻)
↑m (Vtx‘𝐺)) ∈ V | 
| 13 | 11, 12 | abex 5326 | . . . 4
⊢ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ∈ V | 
| 14 | 13 | a1i 11 | . . 3
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ∈ V) | 
| 15 |  | eqidd 2738 | . . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → 𝑓 = 𝑓) | 
| 16 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | 
| 17 | 16 | adantr 480 | . . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (Vtx‘𝑔) = (Vtx‘𝐺)) | 
| 18 |  | fveq2 6906 | . . . . . . 7
⊢ (ℎ = 𝐻 → (Vtx‘ℎ) = (Vtx‘𝐻)) | 
| 19 | 18 | adantl 481 | . . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (Vtx‘ℎ) = (Vtx‘𝐻)) | 
| 20 | 15, 17, 19 | f1oeq123d 6842 | . . . . 5
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ↔ 𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))) | 
| 21 |  | fvexd 6921 | . . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (iEdg‘𝑔) ∈ V) | 
| 22 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | 
| 23 | 22 | adantr 480 | . . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (iEdg‘𝑔) = (iEdg‘𝐺)) | 
| 24 |  | fvexd 6921 | . . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → (iEdg‘ℎ) ∈ V) | 
| 25 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (ℎ = 𝐻 → (iEdg‘ℎ) = (iEdg‘𝐻)) | 
| 26 | 25 | adantl 481 | . . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (iEdg‘ℎ) = (iEdg‘𝐻)) | 
| 27 | 26 | adantr 480 | . . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → (iEdg‘ℎ) = (iEdg‘𝐻)) | 
| 28 |  | eqidd 2738 | . . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → 𝑗 = 𝑗) | 
| 29 |  | dmeq 5914 | . . . . . . . . . . . . 13
⊢ (𝑒 = (iEdg‘𝐺) → dom 𝑒 = dom (iEdg‘𝐺)) | 
| 30 | 29 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → dom 𝑒 = dom (iEdg‘𝐺)) | 
| 31 |  | dmeq 5914 | . . . . . . . . . . . . 13
⊢ (𝑑 = (iEdg‘𝐻) → dom 𝑑 = dom (iEdg‘𝐻)) | 
| 32 | 31 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → dom 𝑑 = dom (iEdg‘𝐻)) | 
| 33 | 28, 30, 32 | f1oeq123d 6842 | . . . . . . . . . . 11
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → (𝑗:dom 𝑒–1-1-onto→dom
𝑑 ↔ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) | 
| 34 |  | fveq1 6905 | . . . . . . . . . . . . 13
⊢ (𝑑 = (iEdg‘𝐻) → (𝑑‘(𝑗‘𝑖)) = ((iEdg‘𝐻)‘(𝑗‘𝑖))) | 
| 35 |  | fveq1 6905 | . . . . . . . . . . . . . 14
⊢ (𝑒 = (iEdg‘𝐺) → (𝑒‘𝑖) = ((iEdg‘𝐺)‘𝑖)) | 
| 36 | 35 | imaeq2d 6078 | . . . . . . . . . . . . 13
⊢ (𝑒 = (iEdg‘𝐺) → (𝑓 “ (𝑒‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) | 
| 37 | 34, 36 | eqeqan12rd 2752 | . . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) | 
| 38 | 30, 37 | raleqbidv 3346 | . . . . . . . . . . 11
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → (∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) | 
| 39 | 33, 38 | anbi12d 632 | . . . . . . . . . 10
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) | 
| 40 | 39 | adantll 714 | . . . . . . . . 9
⊢ ((((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) | 
| 41 | 24, 27, 40 | sbcied2 3833 | . . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → ([(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) | 
| 42 | 21, 23, 41 | sbcied2 3833 | . . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ([(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) | 
| 43 |  | biidd 262 | . . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) | 
| 44 | 42, 43 | bitrd 279 | . . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ([(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) | 
| 45 | 44 | exbidv 1921 | . . . . 5
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) | 
| 46 | 20, 45 | anbi12d 632 | . . . 4
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)))) ↔ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))) | 
| 47 | 46 | abbidv 2808 | . . 3
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))} = {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))}) | 
| 48 | 1, 3, 5, 14, 47 | elovmpod 7677 | . 2
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))})) | 
| 49 |  | id 22 | . . . . . 6
⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) | 
| 50 |  | isgrim.v | . . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) | 
| 51 | 50 | eqcomi 2746 | . . . . . . 7
⊢
(Vtx‘𝐺) =
𝑉 | 
| 52 | 51 | a1i 11 | . . . . . 6
⊢ (𝑓 = 𝐹 → (Vtx‘𝐺) = 𝑉) | 
| 53 |  | isgrim.w | . . . . . . . 8
⊢ 𝑊 = (Vtx‘𝐻) | 
| 54 | 53 | eqcomi 2746 | . . . . . . 7
⊢
(Vtx‘𝐻) =
𝑊 | 
| 55 | 54 | a1i 11 | . . . . . 6
⊢ (𝑓 = 𝐹 → (Vtx‘𝐻) = 𝑊) | 
| 56 | 49, 52, 55 | f1oeq123d 6842 | . . . . 5
⊢ (𝑓 = 𝐹 → (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ↔ 𝐹:𝑉–1-1-onto→𝑊)) | 
| 57 |  | eqidd 2738 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → 𝑗 = 𝑗) | 
| 58 |  | isgrim.e | . . . . . . . . . . 11
⊢ 𝐸 = (iEdg‘𝐺) | 
| 59 | 58 | eqcomi 2746 | . . . . . . . . . 10
⊢
(iEdg‘𝐺) =
𝐸 | 
| 60 | 59 | dmeqi 5915 | . . . . . . . . 9
⊢ dom
(iEdg‘𝐺) = dom 𝐸 | 
| 61 | 60 | a1i 11 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → dom (iEdg‘𝐺) = dom 𝐸) | 
| 62 |  | isgrim.d | . . . . . . . . . . 11
⊢ 𝐷 = (iEdg‘𝐻) | 
| 63 | 62 | eqcomi 2746 | . . . . . . . . . 10
⊢
(iEdg‘𝐻) =
𝐷 | 
| 64 | 63 | dmeqi 5915 | . . . . . . . . 9
⊢ dom
(iEdg‘𝐻) = dom 𝐷 | 
| 65 | 64 | a1i 11 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → dom (iEdg‘𝐻) = dom 𝐷) | 
| 66 | 57, 61, 65 | f1oeq123d 6842 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ↔ 𝑗:dom 𝐸–1-1-onto→dom
𝐷)) | 
| 67 | 63 | fveq1i 6907 | . . . . . . . . . 10
⊢
((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐷‘(𝑗‘𝑖)) | 
| 68 | 67 | a1i 11 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐷‘(𝑗‘𝑖))) | 
| 69 | 59 | fveq1i 6907 | . . . . . . . . . . 11
⊢
((iEdg‘𝐺)‘𝑖) = (𝐸‘𝑖) | 
| 70 | 69 | a1i 11 | . . . . . . . . . 10
⊢ (𝑓 = 𝐹 → ((iEdg‘𝐺)‘𝑖) = (𝐸‘𝑖)) | 
| 71 | 49, 70 | imaeq12d 6079 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ (𝐸‘𝑖))) | 
| 72 | 68, 71 | eqeq12d 2753 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → (((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)) ↔ (𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))) | 
| 73 | 61, 72 | raleqbidv 3346 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))) | 
| 74 | 66, 73 | anbi12d 632 | . . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) | 
| 75 | 74 | exbidv 1921 | . . . . 5
⊢ (𝑓 = 𝐹 → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) | 
| 76 | 56, 75 | anbi12d 632 | . . . 4
⊢ (𝑓 = 𝐹 → ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) | 
| 77 | 76 | elabg 3676 | . . 3
⊢ (𝐹 ∈ 𝑍 → (𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) | 
| 78 | 77 | 3ad2ant3 1136 | . 2
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) | 
| 79 | 48, 78 | bitrd 279 | 1
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |