Step | Hyp | Ref
| Expression |
1 | | df-grim 47348 |
. . 3
⊢ GraphIso
= (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) |
2 | | elex 3480 |
. . . 4
⊢ (𝐺 ∈ 𝑋 → 𝐺 ∈ V) |
3 | 2 | 3ad2ant1 1130 |
. . 3
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → 𝐺 ∈ V) |
4 | | elex 3480 |
. . . 4
⊢ (𝐻 ∈ 𝑌 → 𝐻 ∈ V) |
5 | 4 | 3ad2ant2 1131 |
. . 3
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → 𝐻 ∈ V) |
6 | | f1of 6838 |
. . . . . . 7
⊢ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑓:(Vtx‘𝐺)⟶(Vtx‘𝐻)) |
7 | | fvex 6909 |
. . . . . . . 8
⊢
(Vtx‘𝐻) ∈
V |
8 | | fvex 6909 |
. . . . . . . 8
⊢
(Vtx‘𝐺) ∈
V |
9 | 7, 8 | elmap 8890 |
. . . . . . 7
⊢ (𝑓 ∈ ((Vtx‘𝐻) ↑m
(Vtx‘𝐺)) ↔ 𝑓:(Vtx‘𝐺)⟶(Vtx‘𝐻)) |
10 | 6, 9 | sylibr 233 |
. . . . . 6
⊢ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺))) |
11 | 10 | adantr 479 |
. . . . 5
⊢ ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) → 𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺))) |
12 | | ovex 7452 |
. . . . 5
⊢
((Vtx‘𝐻)
↑m (Vtx‘𝐺)) ∈ V |
13 | 11, 12 | abex 5327 |
. . . 4
⊢ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ∈ V |
14 | 13 | a1i 11 |
. . 3
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ∈ V) |
15 | | eqidd 2726 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → 𝑓 = 𝑓) |
16 | | fveq2 6896 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
17 | 16 | adantr 479 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (Vtx‘𝑔) = (Vtx‘𝐺)) |
18 | | fveq2 6896 |
. . . . . . 7
⊢ (ℎ = 𝐻 → (Vtx‘ℎ) = (Vtx‘𝐻)) |
19 | 18 | adantl 480 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (Vtx‘ℎ) = (Vtx‘𝐻)) |
20 | 15, 17, 19 | f1oeq123d 6832 |
. . . . 5
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ↔ 𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))) |
21 | | fvexd 6911 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (iEdg‘𝑔) ∈ V) |
22 | | fveq2 6896 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) |
23 | 22 | adantr 479 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (iEdg‘𝑔) = (iEdg‘𝐺)) |
24 | | fvexd 6911 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → (iEdg‘ℎ) ∈ V) |
25 | | fveq2 6896 |
. . . . . . . . . . 11
⊢ (ℎ = 𝐻 → (iEdg‘ℎ) = (iEdg‘𝐻)) |
26 | 25 | adantl 480 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (iEdg‘ℎ) = (iEdg‘𝐻)) |
27 | 26 | adantr 479 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → (iEdg‘ℎ) = (iEdg‘𝐻)) |
28 | | eqidd 2726 |
. . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → 𝑗 = 𝑗) |
29 | | dmeq 5906 |
. . . . . . . . . . . . 13
⊢ (𝑒 = (iEdg‘𝐺) → dom 𝑒 = dom (iEdg‘𝐺)) |
30 | 29 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → dom 𝑒 = dom (iEdg‘𝐺)) |
31 | | dmeq 5906 |
. . . . . . . . . . . . 13
⊢ (𝑑 = (iEdg‘𝐻) → dom 𝑑 = dom (iEdg‘𝐻)) |
32 | 31 | adantl 480 |
. . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → dom 𝑑 = dom (iEdg‘𝐻)) |
33 | 28, 30, 32 | f1oeq123d 6832 |
. . . . . . . . . . 11
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → (𝑗:dom 𝑒–1-1-onto→dom
𝑑 ↔ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) |
34 | | fveq1 6895 |
. . . . . . . . . . . . 13
⊢ (𝑑 = (iEdg‘𝐻) → (𝑑‘(𝑗‘𝑖)) = ((iEdg‘𝐻)‘(𝑗‘𝑖))) |
35 | | fveq1 6895 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = (iEdg‘𝐺) → (𝑒‘𝑖) = ((iEdg‘𝐺)‘𝑖)) |
36 | 35 | imaeq2d 6064 |
. . . . . . . . . . . . 13
⊢ (𝑒 = (iEdg‘𝐺) → (𝑓 “ (𝑒‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) |
37 | 34, 36 | eqeqan12rd 2740 |
. . . . . . . . . . . 12
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) |
38 | 30, 37 | raleqbidv 3329 |
. . . . . . . . . . 11
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → (∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) |
39 | 33, 38 | anbi12d 630 |
. . . . . . . . . 10
⊢ ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
40 | 39 | adantll 712 |
. . . . . . . . 9
⊢ ((((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
41 | 24, 27, 40 | sbcied2 3821 |
. . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ ℎ = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → ([(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
42 | 21, 23, 41 | sbcied2 3821 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ([(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
43 | | biidd 261 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
44 | 42, 43 | bitrd 278 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ([(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
45 | 44 | exbidv 1916 |
. . . . 5
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) ↔ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))) |
46 | 20, 45 | anbi12d 630 |
. . . 4
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)))) ↔ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))) |
47 | 46 | abbidv 2794 |
. . 3
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))} = {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))}) |
48 | 1, 3, 5, 14, 47 | elovmpod 7665 |
. 2
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))})) |
49 | | id 22 |
. . . . . 6
⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) |
50 | | isgrim.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
51 | 50 | eqcomi 2734 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
𝑉 |
52 | 51 | a1i 11 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (Vtx‘𝐺) = 𝑉) |
53 | | isgrim.w |
. . . . . . . 8
⊢ 𝑊 = (Vtx‘𝐻) |
54 | 53 | eqcomi 2734 |
. . . . . . 7
⊢
(Vtx‘𝐻) =
𝑊 |
55 | 54 | a1i 11 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (Vtx‘𝐻) = 𝑊) |
56 | 49, 52, 55 | f1oeq123d 6832 |
. . . . 5
⊢ (𝑓 = 𝐹 → (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ↔ 𝐹:𝑉–1-1-onto→𝑊)) |
57 | | eqidd 2726 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → 𝑗 = 𝑗) |
58 | | isgrim.e |
. . . . . . . . . . 11
⊢ 𝐸 = (iEdg‘𝐺) |
59 | 58 | eqcomi 2734 |
. . . . . . . . . 10
⊢
(iEdg‘𝐺) =
𝐸 |
60 | 59 | dmeqi 5907 |
. . . . . . . . 9
⊢ dom
(iEdg‘𝐺) = dom 𝐸 |
61 | 60 | a1i 11 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → dom (iEdg‘𝐺) = dom 𝐸) |
62 | | isgrim.d |
. . . . . . . . . . 11
⊢ 𝐷 = (iEdg‘𝐻) |
63 | 62 | eqcomi 2734 |
. . . . . . . . . 10
⊢
(iEdg‘𝐻) =
𝐷 |
64 | 63 | dmeqi 5907 |
. . . . . . . . 9
⊢ dom
(iEdg‘𝐻) = dom 𝐷 |
65 | 64 | a1i 11 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → dom (iEdg‘𝐻) = dom 𝐷) |
66 | 57, 61, 65 | f1oeq123d 6832 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ↔ 𝑗:dom 𝐸–1-1-onto→dom
𝐷)) |
67 | 63 | fveq1i 6897 |
. . . . . . . . . 10
⊢
((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐷‘(𝑗‘𝑖)) |
68 | 67 | a1i 11 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐷‘(𝑗‘𝑖))) |
69 | 59 | fveq1i 6897 |
. . . . . . . . . . 11
⊢
((iEdg‘𝐺)‘𝑖) = (𝐸‘𝑖) |
70 | 69 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → ((iEdg‘𝐺)‘𝑖) = (𝐸‘𝑖)) |
71 | 49, 70 | imaeq12d 6065 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ (𝐸‘𝑖))) |
72 | 68, 71 | eqeq12d 2741 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)) ↔ (𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))) |
73 | 61, 72 | raleqbidv 3329 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))) |
74 | 66, 73 | anbi12d 630 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) |
75 | 74 | exbidv 1916 |
. . . . 5
⊢ (𝑓 = 𝐹 → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) |
76 | 56, 75 | anbi12d 630 |
. . . 4
⊢ (𝑓 = 𝐹 → ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |
77 | 76 | elabg 3662 |
. . 3
⊢ (𝐹 ∈ 𝑍 → (𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |
78 | 77 | 3ad2ant3 1132 |
. 2
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |
79 | 48, 78 | bitrd 278 |
1
⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom
𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) |