Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgrim Structured version   Visualization version   GIF version

Theorem isgrim 47882
Description: An isomorphism of graphs is a bijection between their vertices that preserves adjacency. (Contributed by AV, 19-Apr-2025.)
Hypotheses
Ref Expression
isgrim.v 𝑉 = (Vtx‘𝐺)
isgrim.w 𝑊 = (Vtx‘𝐻)
isgrim.e 𝐸 = (iEdg‘𝐺)
isgrim.d 𝐷 = (iEdg‘𝐻)
Assertion
Ref Expression
isgrim ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))))
Distinct variable groups:   𝑖,𝐹,𝑗   𝑖,𝐺,𝑗   𝑖,𝐻,𝑗
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝐸(𝑖,𝑗)   𝑉(𝑖,𝑗)   𝑊(𝑖,𝑗)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem isgrim
Dummy variables 𝑑 𝑓 𝑒 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grim 47878 . . 3 GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
2 elex 3468 . . . 4 (𝐺𝑋𝐺 ∈ V)
323ad2ant1 1133 . . 3 ((𝐺𝑋𝐻𝑌𝐹𝑍) → 𝐺 ∈ V)
4 elex 3468 . . . 4 (𝐻𝑌𝐻 ∈ V)
543ad2ant2 1134 . . 3 ((𝐺𝑋𝐻𝑌𝐹𝑍) → 𝐻 ∈ V)
6 f1of 6800 . . . . . . 7 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑓:(Vtx‘𝐺)⟶(Vtx‘𝐻))
7 fvex 6871 . . . . . . . 8 (Vtx‘𝐻) ∈ V
8 fvex 6871 . . . . . . . 8 (Vtx‘𝐺) ∈ V
97, 8elmap 8844 . . . . . . 7 (𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺)) ↔ 𝑓:(Vtx‘𝐺)⟶(Vtx‘𝐻))
106, 9sylibr 234 . . . . . 6 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺)))
1110adantr 480 . . . . 5 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) → 𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺)))
12 ovex 7420 . . . . 5 ((Vtx‘𝐻) ↑m (Vtx‘𝐺)) ∈ V
1311, 12abex 5281 . . . 4 {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ∈ V
1413a1i 11 . . 3 ((𝐺𝑋𝐻𝑌𝐹𝑍) → {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ∈ V)
15 eqidd 2730 . . . . . 6 ((𝑔 = 𝐺 = 𝐻) → 𝑓 = 𝑓)
16 fveq2 6858 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
1716adantr 480 . . . . . 6 ((𝑔 = 𝐺 = 𝐻) → (Vtx‘𝑔) = (Vtx‘𝐺))
18 fveq2 6858 . . . . . . 7 ( = 𝐻 → (Vtx‘) = (Vtx‘𝐻))
1918adantl 481 . . . . . 6 ((𝑔 = 𝐺 = 𝐻) → (Vtx‘) = (Vtx‘𝐻))
2015, 17, 19f1oeq123d 6794 . . . . 5 ((𝑔 = 𝐺 = 𝐻) → (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ↔ 𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)))
21 fvexd 6873 . . . . . . . 8 ((𝑔 = 𝐺 = 𝐻) → (iEdg‘𝑔) ∈ V)
22 fveq2 6858 . . . . . . . . 9 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
2322adantr 480 . . . . . . . 8 ((𝑔 = 𝐺 = 𝐻) → (iEdg‘𝑔) = (iEdg‘𝐺))
24 fvexd 6873 . . . . . . . . 9 (((𝑔 = 𝐺 = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → (iEdg‘) ∈ V)
25 fveq2 6858 . . . . . . . . . . 11 ( = 𝐻 → (iEdg‘) = (iEdg‘𝐻))
2625adantl 481 . . . . . . . . . 10 ((𝑔 = 𝐺 = 𝐻) → (iEdg‘) = (iEdg‘𝐻))
2726adantr 480 . . . . . . . . 9 (((𝑔 = 𝐺 = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → (iEdg‘) = (iEdg‘𝐻))
28 eqidd 2730 . . . . . . . . . . . 12 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → 𝑗 = 𝑗)
29 dmeq 5867 . . . . . . . . . . . . 13 (𝑒 = (iEdg‘𝐺) → dom 𝑒 = dom (iEdg‘𝐺))
3029adantr 480 . . . . . . . . . . . 12 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → dom 𝑒 = dom (iEdg‘𝐺))
31 dmeq 5867 . . . . . . . . . . . . 13 (𝑑 = (iEdg‘𝐻) → dom 𝑑 = dom (iEdg‘𝐻))
3231adantl 481 . . . . . . . . . . . 12 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → dom 𝑑 = dom (iEdg‘𝐻))
3328, 30, 32f1oeq123d 6794 . . . . . . . . . . 11 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → (𝑗:dom 𝑒1-1-onto→dom 𝑑𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
34 fveq1 6857 . . . . . . . . . . . . 13 (𝑑 = (iEdg‘𝐻) → (𝑑‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑖)))
35 fveq1 6857 . . . . . . . . . . . . . 14 (𝑒 = (iEdg‘𝐺) → (𝑒𝑖) = ((iEdg‘𝐺)‘𝑖))
3635imaeq2d 6031 . . . . . . . . . . . . 13 (𝑒 = (iEdg‘𝐺) → (𝑓 “ (𝑒𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))
3734, 36eqeqan12rd 2744 . . . . . . . . . . . 12 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))
3830, 37raleqbidv 3319 . . . . . . . . . . 11 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → (∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))
3933, 38anbi12d 632 . . . . . . . . . 10 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4039adantll 714 . . . . . . . . 9 ((((𝑔 = 𝐺 = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4124, 27, 40sbcied2 3798 . . . . . . . 8 (((𝑔 = 𝐺 = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → ([(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4221, 23, 41sbcied2 3798 . . . . . . 7 ((𝑔 = 𝐺 = 𝐻) → ([(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
43 biidd 262 . . . . . . 7 ((𝑔 = 𝐺 = 𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4442, 43bitrd 279 . . . . . 6 ((𝑔 = 𝐺 = 𝐻) → ([(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4544exbidv 1921 . . . . 5 ((𝑔 = 𝐺 = 𝐻) → (∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4620, 45anbi12d 632 . . . 4 ((𝑔 = 𝐺 = 𝐻) → ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)))) ↔ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))))
4746abbidv 2795 . . 3 ((𝑔 = 𝐺 = 𝐻) → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))} = {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))})
481, 3, 5, 14, 47elovmpod 7633 . 2 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))}))
49 id 22 . . . . . 6 (𝑓 = 𝐹𝑓 = 𝐹)
50 isgrim.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
5150eqcomi 2738 . . . . . . 7 (Vtx‘𝐺) = 𝑉
5251a1i 11 . . . . . 6 (𝑓 = 𝐹 → (Vtx‘𝐺) = 𝑉)
53 isgrim.w . . . . . . . 8 𝑊 = (Vtx‘𝐻)
5453eqcomi 2738 . . . . . . 7 (Vtx‘𝐻) = 𝑊
5554a1i 11 . . . . . 6 (𝑓 = 𝐹 → (Vtx‘𝐻) = 𝑊)
5649, 52, 55f1oeq123d 6794 . . . . 5 (𝑓 = 𝐹 → (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ↔ 𝐹:𝑉1-1-onto𝑊))
57 eqidd 2730 . . . . . . . 8 (𝑓 = 𝐹𝑗 = 𝑗)
58 isgrim.e . . . . . . . . . . 11 𝐸 = (iEdg‘𝐺)
5958eqcomi 2738 . . . . . . . . . 10 (iEdg‘𝐺) = 𝐸
6059dmeqi 5868 . . . . . . . . 9 dom (iEdg‘𝐺) = dom 𝐸
6160a1i 11 . . . . . . . 8 (𝑓 = 𝐹 → dom (iEdg‘𝐺) = dom 𝐸)
62 isgrim.d . . . . . . . . . . 11 𝐷 = (iEdg‘𝐻)
6362eqcomi 2738 . . . . . . . . . 10 (iEdg‘𝐻) = 𝐷
6463dmeqi 5868 . . . . . . . . 9 dom (iEdg‘𝐻) = dom 𝐷
6564a1i 11 . . . . . . . 8 (𝑓 = 𝐹 → dom (iEdg‘𝐻) = dom 𝐷)
6657, 61, 65f1oeq123d 6794 . . . . . . 7 (𝑓 = 𝐹 → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ 𝑗:dom 𝐸1-1-onto→dom 𝐷))
6763fveq1i 6859 . . . . . . . . . 10 ((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐷‘(𝑗𝑖))
6867a1i 11 . . . . . . . . 9 (𝑓 = 𝐹 → ((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐷‘(𝑗𝑖)))
6959fveq1i 6859 . . . . . . . . . . 11 ((iEdg‘𝐺)‘𝑖) = (𝐸𝑖)
7069a1i 11 . . . . . . . . . 10 (𝑓 = 𝐹 → ((iEdg‘𝐺)‘𝑖) = (𝐸𝑖))
7149, 70imaeq12d 6032 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ (𝐸𝑖)))
7268, 71eqeq12d 2745 . . . . . . . 8 (𝑓 = 𝐹 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)) ↔ (𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))
7361, 72raleqbidv 3319 . . . . . . 7 (𝑓 = 𝐹 → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))
7466, 73anbi12d 632 . . . . . 6 (𝑓 = 𝐹 → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖)))))
7574exbidv 1921 . . . . 5 (𝑓 = 𝐹 → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖)))))
7656, 75anbi12d 632 . . . 4 (𝑓 = 𝐹 → ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))))
7776elabg 3643 . . 3 (𝐹𝑍 → (𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))))
78773ad2ant3 1135 . 2 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))))
7948, 78bitrd 279 1 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  Vcvv 3447  [wsbc 3753  dom cdm 5638  cima 5641  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  m cmap 8799  Vtxcvtx 28923  iEdgciedg 28924   GraphIso cgrim 47875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-grim 47878
This theorem is referenced by:  grimprop  47883  grimidvtxedg  47885  grimcnv  47888  grimco  47889  isuspgrim0  47894  dfgric2  47915
  Copyright terms: Public domain W3C validator