Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgrim Structured version   Visualization version   GIF version

Theorem isgrim 47352
Description: An isomorphism of graphs is a bijection between their vertices that preserves adjacency. (Contributed by AV, 19-Apr-2025.)
Hypotheses
Ref Expression
isgrim.v 𝑉 = (Vtx‘𝐺)
isgrim.w 𝑊 = (Vtx‘𝐻)
isgrim.e 𝐸 = (iEdg‘𝐺)
isgrim.d 𝐷 = (iEdg‘𝐻)
Assertion
Ref Expression
isgrim ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))))
Distinct variable groups:   𝑖,𝐹,𝑗   𝑖,𝐺,𝑗   𝑖,𝐻,𝑗
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝐸(𝑖,𝑗)   𝑉(𝑖,𝑗)   𝑊(𝑖,𝑗)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem isgrim
Dummy variables 𝑑 𝑓 𝑒 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grim 47348 . . 3 GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
2 elex 3480 . . . 4 (𝐺𝑋𝐺 ∈ V)
323ad2ant1 1130 . . 3 ((𝐺𝑋𝐻𝑌𝐹𝑍) → 𝐺 ∈ V)
4 elex 3480 . . . 4 (𝐻𝑌𝐻 ∈ V)
543ad2ant2 1131 . . 3 ((𝐺𝑋𝐻𝑌𝐹𝑍) → 𝐻 ∈ V)
6 f1of 6838 . . . . . . 7 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑓:(Vtx‘𝐺)⟶(Vtx‘𝐻))
7 fvex 6909 . . . . . . . 8 (Vtx‘𝐻) ∈ V
8 fvex 6909 . . . . . . . 8 (Vtx‘𝐺) ∈ V
97, 8elmap 8890 . . . . . . 7 (𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺)) ↔ 𝑓:(Vtx‘𝐺)⟶(Vtx‘𝐻))
106, 9sylibr 233 . . . . . 6 (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺)))
1110adantr 479 . . . . 5 ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) → 𝑓 ∈ ((Vtx‘𝐻) ↑m (Vtx‘𝐺)))
12 ovex 7452 . . . . 5 ((Vtx‘𝐻) ↑m (Vtx‘𝐺)) ∈ V
1311, 12abex 5327 . . . 4 {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ∈ V
1413a1i 11 . . 3 ((𝐺𝑋𝐻𝑌𝐹𝑍) → {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ∈ V)
15 eqidd 2726 . . . . . 6 ((𝑔 = 𝐺 = 𝐻) → 𝑓 = 𝑓)
16 fveq2 6896 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
1716adantr 479 . . . . . 6 ((𝑔 = 𝐺 = 𝐻) → (Vtx‘𝑔) = (Vtx‘𝐺))
18 fveq2 6896 . . . . . . 7 ( = 𝐻 → (Vtx‘) = (Vtx‘𝐻))
1918adantl 480 . . . . . 6 ((𝑔 = 𝐺 = 𝐻) → (Vtx‘) = (Vtx‘𝐻))
2015, 17, 19f1oeq123d 6832 . . . . 5 ((𝑔 = 𝐺 = 𝐻) → (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ↔ 𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)))
21 fvexd 6911 . . . . . . . 8 ((𝑔 = 𝐺 = 𝐻) → (iEdg‘𝑔) ∈ V)
22 fveq2 6896 . . . . . . . . 9 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
2322adantr 479 . . . . . . . 8 ((𝑔 = 𝐺 = 𝐻) → (iEdg‘𝑔) = (iEdg‘𝐺))
24 fvexd 6911 . . . . . . . . 9 (((𝑔 = 𝐺 = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → (iEdg‘) ∈ V)
25 fveq2 6896 . . . . . . . . . . 11 ( = 𝐻 → (iEdg‘) = (iEdg‘𝐻))
2625adantl 480 . . . . . . . . . 10 ((𝑔 = 𝐺 = 𝐻) → (iEdg‘) = (iEdg‘𝐻))
2726adantr 479 . . . . . . . . 9 (((𝑔 = 𝐺 = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → (iEdg‘) = (iEdg‘𝐻))
28 eqidd 2726 . . . . . . . . . . . 12 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → 𝑗 = 𝑗)
29 dmeq 5906 . . . . . . . . . . . . 13 (𝑒 = (iEdg‘𝐺) → dom 𝑒 = dom (iEdg‘𝐺))
3029adantr 479 . . . . . . . . . . . 12 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → dom 𝑒 = dom (iEdg‘𝐺))
31 dmeq 5906 . . . . . . . . . . . . 13 (𝑑 = (iEdg‘𝐻) → dom 𝑑 = dom (iEdg‘𝐻))
3231adantl 480 . . . . . . . . . . . 12 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → dom 𝑑 = dom (iEdg‘𝐻))
3328, 30, 32f1oeq123d 6832 . . . . . . . . . . 11 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → (𝑗:dom 𝑒1-1-onto→dom 𝑑𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
34 fveq1 6895 . . . . . . . . . . . . 13 (𝑑 = (iEdg‘𝐻) → (𝑑‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑖)))
35 fveq1 6895 . . . . . . . . . . . . . 14 (𝑒 = (iEdg‘𝐺) → (𝑒𝑖) = ((iEdg‘𝐺)‘𝑖))
3635imaeq2d 6064 . . . . . . . . . . . . 13 (𝑒 = (iEdg‘𝐺) → (𝑓 “ (𝑒𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))
3734, 36eqeqan12rd 2740 . . . . . . . . . . . 12 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))
3830, 37raleqbidv 3329 . . . . . . . . . . 11 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → (∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))
3933, 38anbi12d 630 . . . . . . . . . 10 ((𝑒 = (iEdg‘𝐺) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4039adantll 712 . . . . . . . . 9 ((((𝑔 = 𝐺 = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) ∧ 𝑑 = (iEdg‘𝐻)) → ((𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4124, 27, 40sbcied2 3821 . . . . . . . 8 (((𝑔 = 𝐺 = 𝐻) ∧ 𝑒 = (iEdg‘𝐺)) → ([(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4221, 23, 41sbcied2 3821 . . . . . . 7 ((𝑔 = 𝐺 = 𝐻) → ([(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
43 biidd 261 . . . . . . 7 ((𝑔 = 𝐺 = 𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4442, 43bitrd 278 . . . . . 6 ((𝑔 = 𝐺 = 𝐻) → ([(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4544exbidv 1916 . . . . 5 ((𝑔 = 𝐺 = 𝐻) → (∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))) ↔ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))))
4620, 45anbi12d 630 . . . 4 ((𝑔 = 𝐺 = 𝐻) → ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)))) ↔ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))))
4746abbidv 2794 . . 3 ((𝑔 = 𝐺 = 𝐻) → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))} = {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))})
481, 3, 5, 14, 47elovmpod 7665 . 2 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))}))
49 id 22 . . . . . 6 (𝑓 = 𝐹𝑓 = 𝐹)
50 isgrim.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
5150eqcomi 2734 . . . . . . 7 (Vtx‘𝐺) = 𝑉
5251a1i 11 . . . . . 6 (𝑓 = 𝐹 → (Vtx‘𝐺) = 𝑉)
53 isgrim.w . . . . . . . 8 𝑊 = (Vtx‘𝐻)
5453eqcomi 2734 . . . . . . 7 (Vtx‘𝐻) = 𝑊
5554a1i 11 . . . . . 6 (𝑓 = 𝐹 → (Vtx‘𝐻) = 𝑊)
5649, 52, 55f1oeq123d 6832 . . . . 5 (𝑓 = 𝐹 → (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ↔ 𝐹:𝑉1-1-onto𝑊))
57 eqidd 2726 . . . . . . . 8 (𝑓 = 𝐹𝑗 = 𝑗)
58 isgrim.e . . . . . . . . . . 11 𝐸 = (iEdg‘𝐺)
5958eqcomi 2734 . . . . . . . . . 10 (iEdg‘𝐺) = 𝐸
6059dmeqi 5907 . . . . . . . . 9 dom (iEdg‘𝐺) = dom 𝐸
6160a1i 11 . . . . . . . 8 (𝑓 = 𝐹 → dom (iEdg‘𝐺) = dom 𝐸)
62 isgrim.d . . . . . . . . . . 11 𝐷 = (iEdg‘𝐻)
6362eqcomi 2734 . . . . . . . . . 10 (iEdg‘𝐻) = 𝐷
6463dmeqi 5907 . . . . . . . . 9 dom (iEdg‘𝐻) = dom 𝐷
6564a1i 11 . . . . . . . 8 (𝑓 = 𝐹 → dom (iEdg‘𝐻) = dom 𝐷)
6657, 61, 65f1oeq123d 6832 . . . . . . 7 (𝑓 = 𝐹 → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ 𝑗:dom 𝐸1-1-onto→dom 𝐷))
6763fveq1i 6897 . . . . . . . . . 10 ((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐷‘(𝑗𝑖))
6867a1i 11 . . . . . . . . 9 (𝑓 = 𝐹 → ((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐷‘(𝑗𝑖)))
6959fveq1i 6897 . . . . . . . . . . 11 ((iEdg‘𝐺)‘𝑖) = (𝐸𝑖)
7069a1i 11 . . . . . . . . . 10 (𝑓 = 𝐹 → ((iEdg‘𝐺)‘𝑖) = (𝐸𝑖))
7149, 70imaeq12d 6065 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ (𝐸𝑖)))
7268, 71eqeq12d 2741 . . . . . . . 8 (𝑓 = 𝐹 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)) ↔ (𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))
7361, 72raleqbidv 3329 . . . . . . 7 (𝑓 = 𝐹 → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))
7466, 73anbi12d 630 . . . . . 6 (𝑓 = 𝐹 → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖)))))
7574exbidv 1916 . . . . 5 (𝑓 = 𝐹 → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) ↔ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖)))))
7656, 75anbi12d 630 . . . 4 (𝑓 = 𝐹 → ((𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖)))) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))))
7776elabg 3662 . . 3 (𝐹𝑍 → (𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))))
78773ad2ant3 1132 . 2 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ {𝑓 ∣ (𝑓:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))))} ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))))
7948, 78bitrd 278 1 ((𝐺𝑋𝐻𝑌𝐹𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom 𝐸1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗𝑖)) = (𝐹 “ (𝐸𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  {cab 2702  wral 3050  Vcvv 3461  [wsbc 3773  dom cdm 5678  cima 5681  wf 6545  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  m cmap 8845  Vtxcvtx 28881  iEdgciedg 28882   GraphIso cgrim 47345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-grim 47348
This theorem is referenced by:  grimprop  47353  isuspgrim0  47356  grimidvtxedg  47360  grimcnv  47363  grimco  47364  dfgric2  47367
  Copyright terms: Public domain W3C validator