Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricrel Structured version   Visualization version   GIF version

Theorem gricrel 47899
Description: The "is isomorphic to" relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.)
Assertion
Ref Expression
gricrel Rel ≃𝑔𝑟

Proof of Theorem gricrel
StepHypRef Expression
1 df-gric 47861 . . 3 𝑔𝑟 = ( GraphIso “ (V ∖ 1o))
2 cnvimass 6074 . . . 4 ( GraphIso “ (V ∖ 1o)) ⊆ dom GraphIso
3 grimfn 47859 . . . . 5 GraphIso Fn (V × V)
43fndmi 6647 . . . 4 dom GraphIso = (V × V)
52, 4sseqtri 4012 . . 3 ( GraphIso “ (V ∖ 1o)) ⊆ (V × V)
61, 5eqsstri 4010 . 2 𝑔𝑟 ⊆ (V × V)
7 relxp 5677 . 2 Rel (V × V)
8 relss 5765 . 2 ( ≃𝑔𝑟 ⊆ (V × V) → (Rel (V × V) → Rel ≃𝑔𝑟 ))
96, 7, 8mp2 9 1 Rel ≃𝑔𝑟
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3464  cdif 3928  wss 3931   × cxp 5657  ccnv 5658  dom cdm 5659  cima 5662  Rel wrel 5664  1oc1o 8478   GraphIso cgrim 47855  𝑔𝑟 cgric 47856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-grim 47858  df-gric 47861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator