![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gricrel | Structured version Visualization version GIF version |
Description: The "is isomorphic to" relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) |
Ref | Expression |
---|---|
gricrel | ⊢ Rel ≃𝑔𝑟 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gric 47751 | . . 3 ⊢ ≃𝑔𝑟 = (◡ GraphIso “ (V ∖ 1o)) | |
2 | cnvimass 6111 | . . . 4 ⊢ (◡ GraphIso “ (V ∖ 1o)) ⊆ dom GraphIso | |
3 | grimfn 47749 | . . . . 5 ⊢ GraphIso Fn (V × V) | |
4 | 3 | fndmi 6683 | . . . 4 ⊢ dom GraphIso = (V × V) |
5 | 2, 4 | sseqtri 4045 | . . 3 ⊢ (◡ GraphIso “ (V ∖ 1o)) ⊆ (V × V) |
6 | 1, 5 | eqsstri 4043 | . 2 ⊢ ≃𝑔𝑟 ⊆ (V × V) |
7 | relxp 5718 | . 2 ⊢ Rel (V × V) | |
8 | relss 5805 | . 2 ⊢ ( ≃𝑔𝑟 ⊆ (V × V) → (Rel (V × V) → Rel ≃𝑔𝑟 )) | |
9 | 6, 7, 8 | mp2 9 | 1 ⊢ Rel ≃𝑔𝑟 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 × cxp 5698 ◡ccnv 5699 dom cdm 5700 “ cima 5703 Rel wrel 5705 1oc1o 8515 GraphIso cgrim 47745 ≃𝑔𝑟 cgric 47746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-grim 47748 df-gric 47751 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |