| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gricrel | Structured version Visualization version GIF version | ||
| Description: The "is isomorphic to" relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) |
| Ref | Expression |
|---|---|
| gricrel | ⊢ Rel ≃𝑔𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gric 47861 | . . 3 ⊢ ≃𝑔𝑟 = (◡ GraphIso “ (V ∖ 1o)) | |
| 2 | cnvimass 6074 | . . . 4 ⊢ (◡ GraphIso “ (V ∖ 1o)) ⊆ dom GraphIso | |
| 3 | grimfn 47859 | . . . . 5 ⊢ GraphIso Fn (V × V) | |
| 4 | 3 | fndmi 6647 | . . . 4 ⊢ dom GraphIso = (V × V) |
| 5 | 2, 4 | sseqtri 4012 | . . 3 ⊢ (◡ GraphIso “ (V ∖ 1o)) ⊆ (V × V) |
| 6 | 1, 5 | eqsstri 4010 | . 2 ⊢ ≃𝑔𝑟 ⊆ (V × V) |
| 7 | relxp 5677 | . 2 ⊢ Rel (V × V) | |
| 8 | relss 5765 | . 2 ⊢ ( ≃𝑔𝑟 ⊆ (V × V) → (Rel (V × V) → Rel ≃𝑔𝑟 )) | |
| 9 | 6, 7, 8 | mp2 9 | 1 ⊢ Rel ≃𝑔𝑟 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 × cxp 5657 ◡ccnv 5658 dom cdm 5659 “ cima 5662 Rel wrel 5664 1oc1o 8478 GraphIso cgrim 47855 ≃𝑔𝑟 cgric 47856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 df-grim 47858 df-gric 47861 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |