Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricrel Structured version   Visualization version   GIF version

Theorem gricrel 47904
Description: The "is isomorphic to" relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.)
Assertion
Ref Expression
gricrel Rel ≃𝑔𝑟

Proof of Theorem gricrel
StepHypRef Expression
1 df-gric 47866 . . 3 𝑔𝑟 = ( GraphIso “ (V ∖ 1o))
2 cnvimass 6037 . . . 4 ( GraphIso “ (V ∖ 1o)) ⊆ dom GraphIso
3 grimfn 47864 . . . . 5 GraphIso Fn (V × V)
43fndmi 6590 . . . 4 dom GraphIso = (V × V)
52, 4sseqtri 3986 . . 3 ( GraphIso “ (V ∖ 1o)) ⊆ (V × V)
61, 5eqsstri 3984 . 2 𝑔𝑟 ⊆ (V × V)
7 relxp 5641 . 2 Rel (V × V)
8 relss 5729 . 2 ( ≃𝑔𝑟 ⊆ (V × V) → (Rel (V × V) → Rel ≃𝑔𝑟 ))
96, 7, 8mp2 9 1 Rel ≃𝑔𝑟
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3438  cdif 3902  wss 3905   × cxp 5621  ccnv 5622  dom cdm 5623  cima 5626  Rel wrel 5628  1oc1o 8388   GraphIso cgrim 47860  𝑔𝑟 cgric 47861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-grim 47863  df-gric 47866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator