Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimdmrel Structured version   Visualization version   GIF version

Theorem grimdmrel 48007
Description: The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.)
Assertion
Ref Expression
grimdmrel Rel dom GraphIso

Proof of Theorem grimdmrel
Dummy variables 𝑒 𝑑 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grim 48005 . 2 GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
21reldmmpo 7488 1 Rel dom GraphIso
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  {cab 2711  wral 3048  Vcvv 3437  [wsbc 3737  dom cdm 5621  cima 5624  Rel wrel 5626  1-1-ontowf1o 6487  cfv 6488  Vtxcvtx 28978  iEdgciedg 28979   GraphIso cgrim 48002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-dm 5631  df-oprab 7358  df-mpo 7359  df-grim 48005
This theorem is referenced by:  grimprop  48010  grimuhgr  48014  grimcnv  48015  grimco  48016  gricrcl  48041  uhgrimisgrgric  48058
  Copyright terms: Public domain W3C validator