![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grimdmrel | Structured version Visualization version GIF version |
Description: The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.) |
Ref | Expression |
---|---|
grimdmrel | ⊢ Rel dom GraphIso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-grim 47748 | . 2 ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | |
2 | 1 | reldmmpo 7584 | 1 ⊢ Rel dom GraphIso |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 {cab 2717 ∀wral 3067 Vcvv 3488 [wsbc 3804 dom cdm 5700 “ cima 5703 Rel wrel 5705 –1-1-onto→wf1o 6572 ‘cfv 6573 Vtxcvtx 29031 iEdgciedg 29032 GraphIso cgrim 47745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-oprab 7452 df-mpo 7453 df-grim 47748 |
This theorem is referenced by: grimprop 47753 grimuhgr 47762 grimcnv 47763 grimco 47764 gricrcl 47767 uhgrimisgrgric 47783 |
Copyright terms: Public domain | W3C validator |