Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimdmrel Structured version   Visualization version   GIF version

Theorem grimdmrel 47350
Description: The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.)
Assertion
Ref Expression
grimdmrel Rel dom GraphIso

Proof of Theorem grimdmrel
Dummy variables 𝑒 𝑑 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grim 47348 . 2 GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
21reldmmpo 7555 1 Rel dom GraphIso
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wex 1773  {cab 2702  wral 3050  Vcvv 3461  [wsbc 3773  dom cdm 5678  cima 5681  Rel wrel 5683  1-1-ontowf1o 6548  cfv 6549  Vtxcvtx 28881  iEdgciedg 28882   GraphIso cgrim 47345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-rel 5685  df-dm 5688  df-oprab 7423  df-mpo 7424  df-grim 47348
This theorem is referenced by:  grimprop  47353  grimuhgr  47362  grimcnv  47363  grimco  47364  gricbri  47368
  Copyright terms: Public domain W3C validator