![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grimdmrel | Structured version Visualization version GIF version |
Description: The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.) |
Ref | Expression |
---|---|
grimdmrel | ⊢ Rel dom GraphIso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-grim 47348 | . 2 ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | |
2 | 1 | reldmmpo 7555 | 1 ⊢ Rel dom GraphIso |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∃wex 1773 {cab 2702 ∀wral 3050 Vcvv 3461 [wsbc 3773 dom cdm 5678 “ cima 5681 Rel wrel 5683 –1-1-onto→wf1o 6548 ‘cfv 6549 Vtxcvtx 28881 iEdgciedg 28882 GraphIso cgrim 47345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-dm 5688 df-oprab 7423 df-mpo 7424 df-grim 47348 |
This theorem is referenced by: grimprop 47353 grimuhgr 47362 grimcnv 47363 grimco 47364 gricbri 47368 |
Copyright terms: Public domain | W3C validator |