Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimdmrel Structured version   Visualization version   GIF version

Theorem grimdmrel 47866
Description: The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.)
Assertion
Ref Expression
grimdmrel Rel dom GraphIso

Proof of Theorem grimdmrel
Dummy variables 𝑒 𝑑 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grim 47864 . 2 GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
21reldmmpo 7567 1 Rel dom GraphIso
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  {cab 2714  wral 3061  Vcvv 3480  [wsbc 3788  dom cdm 5685  cima 5688  Rel wrel 5690  1-1-ontowf1o 6560  cfv 6561  Vtxcvtx 29013  iEdgciedg 29014   GraphIso cgrim 47861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-dm 5695  df-oprab 7435  df-mpo 7436  df-grim 47864
This theorem is referenced by:  grimprop  47869  grimuhgr  47878  grimcnv  47879  grimco  47880  gricrcl  47883  uhgrimisgrgric  47899
  Copyright terms: Public domain W3C validator