| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grimdmrel | Structured version Visualization version GIF version | ||
| Description: The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.) |
| Ref | Expression |
|---|---|
| grimdmrel | ⊢ Rel dom GraphIso |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grim 47878 | . 2 ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | |
| 2 | 1 | reldmmpo 7523 | 1 ⊢ Rel dom GraphIso |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2707 ∀wral 3044 Vcvv 3447 [wsbc 3753 dom cdm 5638 “ cima 5641 Rel wrel 5643 –1-1-onto→wf1o 6510 ‘cfv 6511 Vtxcvtx 28923 iEdgciedg 28924 GraphIso cgrim 47875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-oprab 7391 df-mpo 7392 df-grim 47878 |
| This theorem is referenced by: grimprop 47883 grimuhgr 47887 grimcnv 47888 grimco 47889 gricrcl 47914 uhgrimisgrgric 47931 |
| Copyright terms: Public domain | W3C validator |