| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grimdmrel | Structured version Visualization version GIF version | ||
| Description: The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.) |
| Ref | Expression |
|---|---|
| grimdmrel | ⊢ Rel dom GraphIso |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grim 48005 | . 2 ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | |
| 2 | 1 | reldmmpo 7488 | 1 ⊢ Rel dom GraphIso |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 {cab 2711 ∀wral 3048 Vcvv 3437 [wsbc 3737 dom cdm 5621 “ cima 5624 Rel wrel 5626 –1-1-onto→wf1o 6487 ‘cfv 6488 Vtxcvtx 28978 iEdgciedg 28979 GraphIso cgrim 48002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-dm 5631 df-oprab 7358 df-mpo 7359 df-grim 48005 |
| This theorem is referenced by: grimprop 48010 grimuhgr 48014 grimcnv 48015 grimco 48016 gricrcl 48041 uhgrimisgrgric 48058 |
| Copyright terms: Public domain | W3C validator |