Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimdmrel Structured version   Visualization version   GIF version

Theorem grimdmrel 47917
Description: The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.)
Assertion
Ref Expression
grimdmrel Rel dom GraphIso

Proof of Theorem grimdmrel
Dummy variables 𝑒 𝑑 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grim 47915 . 2 GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
21reldmmpo 7480 1 Rel dom GraphIso
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  {cab 2709  wral 3047  Vcvv 3436  [wsbc 3741  dom cdm 5616  cima 5619  Rel wrel 5621  1-1-ontowf1o 6480  cfv 6481  Vtxcvtx 28975  iEdgciedg 28976   GraphIso cgrim 47912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-dm 5626  df-oprab 7350  df-mpo 7351  df-grim 47915
This theorem is referenced by:  grimprop  47920  grimuhgr  47924  grimcnv  47925  grimco  47926  gricrcl  47951  uhgrimisgrgric  47968
  Copyright terms: Public domain W3C validator