| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grimdmrel | Structured version Visualization version GIF version | ||
| Description: The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.) |
| Ref | Expression |
|---|---|
| grimdmrel | ⊢ Rel dom GraphIso |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grim 47817 | . 2 ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | |
| 2 | 1 | reldmmpo 7536 | 1 ⊢ Rel dom GraphIso |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1778 {cab 2712 ∀wral 3050 Vcvv 3457 [wsbc 3763 dom cdm 5652 “ cima 5655 Rel wrel 5657 –1-1-onto→wf1o 6527 ‘cfv 6528 Vtxcvtx 28909 iEdgciedg 28910 GraphIso cgrim 47814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-xp 5658 df-rel 5659 df-dm 5662 df-oprab 7404 df-mpo 7405 df-grim 47817 |
| This theorem is referenced by: grimprop 47822 grimuhgr 47831 grimcnv 47832 grimco 47833 gricrcl 47836 uhgrimisgrgric 47852 |
| Copyright terms: Public domain | W3C validator |