Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brgric Structured version   Visualization version   GIF version

Theorem brgric 47765
Description: The relation "is isomorphic to" for graphs. (Contributed by AV, 28-Apr-2025.)
Assertion
Ref Expression
brgric (𝑅𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅)

Proof of Theorem brgric
StepHypRef Expression
1 df-gric 47751 . 2 𝑔𝑟 = ( GraphIso “ (V ∖ 1o))
2 grimfn 47749 . 2 GraphIso Fn (V × V)
31, 2brwitnlem 8563 1 (𝑅𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wne 2946  Vcvv 3488  c0 4352   class class class wbr 5166   × cxp 5698  (class class class)co 7448   GraphIso cgrim 47745  𝑔𝑟 cgric 47746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-grim 47748  df-gric 47751
This theorem is referenced by:  brgrici  47766  gricrcl  47767  dfgric2  47768  gricuspgr  47771  gricsym  47774  grictr  47776  gricen  47778  gricgrlic  47835  usgrexmpl12ngric  47853
  Copyright terms: Public domain W3C validator