Detailed syntax breakdown of Definition df-grim
Step | Hyp | Ref
| Expression |
1 | | cgrim 47745 |
. 2
class
GraphIso |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | vh |
. . 3
setvar ℎ |
4 | | cvv 3488 |
. . 3
class
V |
5 | 2 | cv 1536 |
. . . . . . 7
class 𝑔 |
6 | | cvtx 29031 |
. . . . . . 7
class
Vtx |
7 | 5, 6 | cfv 6573 |
. . . . . 6
class
(Vtx‘𝑔) |
8 | 3 | cv 1536 |
. . . . . . 7
class ℎ |
9 | 8, 6 | cfv 6573 |
. . . . . 6
class
(Vtx‘ℎ) |
10 | | vf |
. . . . . . 7
setvar 𝑓 |
11 | 10 | cv 1536 |
. . . . . 6
class 𝑓 |
12 | 7, 9, 11 | wf1o 6572 |
. . . . 5
wff 𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) |
13 | | ve |
. . . . . . . . . . . 12
setvar 𝑒 |
14 | 13 | cv 1536 |
. . . . . . . . . . 11
class 𝑒 |
15 | 14 | cdm 5700 |
. . . . . . . . . 10
class dom 𝑒 |
16 | | vd |
. . . . . . . . . . . 12
setvar 𝑑 |
17 | 16 | cv 1536 |
. . . . . . . . . . 11
class 𝑑 |
18 | 17 | cdm 5700 |
. . . . . . . . . 10
class dom 𝑑 |
19 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
20 | 19 | cv 1536 |
. . . . . . . . . 10
class 𝑗 |
21 | 15, 18, 20 | wf1o 6572 |
. . . . . . . . 9
wff 𝑗:dom 𝑒–1-1-onto→dom
𝑑 |
22 | | vi |
. . . . . . . . . . . . . 14
setvar 𝑖 |
23 | 22 | cv 1536 |
. . . . . . . . . . . . 13
class 𝑖 |
24 | 23, 20 | cfv 6573 |
. . . . . . . . . . . 12
class (𝑗‘𝑖) |
25 | 24, 17 | cfv 6573 |
. . . . . . . . . . 11
class (𝑑‘(𝑗‘𝑖)) |
26 | 23, 14 | cfv 6573 |
. . . . . . . . . . . 12
class (𝑒‘𝑖) |
27 | 11, 26 | cima 5703 |
. . . . . . . . . . 11
class (𝑓 “ (𝑒‘𝑖)) |
28 | 25, 27 | wceq 1537 |
. . . . . . . . . 10
wff (𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)) |
29 | 28, 22, 15 | wral 3067 |
. . . . . . . . 9
wff
∀𝑖 ∈ dom
𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)) |
30 | 21, 29 | wa 395 |
. . . . . . . 8
wff (𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) |
31 | | ciedg 29032 |
. . . . . . . . 9
class
iEdg |
32 | 8, 31 | cfv 6573 |
. . . . . . . 8
class
(iEdg‘ℎ) |
33 | 30, 16, 32 | wsbc 3804 |
. . . . . . 7
wff
[(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) |
34 | 5, 31 | cfv 6573 |
. . . . . . 7
class
(iEdg‘𝑔) |
35 | 33, 13, 34 | wsbc 3804 |
. . . . . 6
wff
[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) |
36 | 35, 19 | wex 1777 |
. . . . 5
wff
∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) |
37 | 12, 36 | wa 395 |
. . . 4
wff (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)))) |
38 | 37, 10 | cab 2717 |
. . 3
class {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))} |
39 | 2, 3, 4, 4, 38 | cmpo 7450 |
. 2
class (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) |
40 | 1, 39 | wceq 1537 |
1
wff GraphIso =
(𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) |