Detailed syntax breakdown of Definition df-grim
| Step | Hyp | Ref
| Expression |
| 1 | | cgrim 47888 |
. 2
class
GraphIso |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | vh |
. . 3
setvar ℎ |
| 4 | | cvv 3459 |
. . 3
class
V |
| 5 | 2 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 6 | | cvtx 28975 |
. . . . . . 7
class
Vtx |
| 7 | 5, 6 | cfv 6531 |
. . . . . 6
class
(Vtx‘𝑔) |
| 8 | 3 | cv 1539 |
. . . . . . 7
class ℎ |
| 9 | 8, 6 | cfv 6531 |
. . . . . 6
class
(Vtx‘ℎ) |
| 10 | | vf |
. . . . . . 7
setvar 𝑓 |
| 11 | 10 | cv 1539 |
. . . . . 6
class 𝑓 |
| 12 | 7, 9, 11 | wf1o 6530 |
. . . . 5
wff 𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) |
| 13 | | ve |
. . . . . . . . . . . 12
setvar 𝑒 |
| 14 | 13 | cv 1539 |
. . . . . . . . . . 11
class 𝑒 |
| 15 | 14 | cdm 5654 |
. . . . . . . . . 10
class dom 𝑒 |
| 16 | | vd |
. . . . . . . . . . . 12
setvar 𝑑 |
| 17 | 16 | cv 1539 |
. . . . . . . . . . 11
class 𝑑 |
| 18 | 17 | cdm 5654 |
. . . . . . . . . 10
class dom 𝑑 |
| 19 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
| 20 | 19 | cv 1539 |
. . . . . . . . . 10
class 𝑗 |
| 21 | 15, 18, 20 | wf1o 6530 |
. . . . . . . . 9
wff 𝑗:dom 𝑒–1-1-onto→dom
𝑑 |
| 22 | | vi |
. . . . . . . . . . . . . 14
setvar 𝑖 |
| 23 | 22 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑖 |
| 24 | 23, 20 | cfv 6531 |
. . . . . . . . . . . 12
class (𝑗‘𝑖) |
| 25 | 24, 17 | cfv 6531 |
. . . . . . . . . . 11
class (𝑑‘(𝑗‘𝑖)) |
| 26 | 23, 14 | cfv 6531 |
. . . . . . . . . . . 12
class (𝑒‘𝑖) |
| 27 | 11, 26 | cima 5657 |
. . . . . . . . . . 11
class (𝑓 “ (𝑒‘𝑖)) |
| 28 | 25, 27 | wceq 1540 |
. . . . . . . . . 10
wff (𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)) |
| 29 | 28, 22, 15 | wral 3051 |
. . . . . . . . 9
wff
∀𝑖 ∈ dom
𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)) |
| 30 | 21, 29 | wa 395 |
. . . . . . . 8
wff (𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) |
| 31 | | ciedg 28976 |
. . . . . . . . 9
class
iEdg |
| 32 | 8, 31 | cfv 6531 |
. . . . . . . 8
class
(iEdg‘ℎ) |
| 33 | 30, 16, 32 | wsbc 3765 |
. . . . . . 7
wff
[(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) |
| 34 | 5, 31 | cfv 6531 |
. . . . . . 7
class
(iEdg‘𝑔) |
| 35 | 33, 13, 34 | wsbc 3765 |
. . . . . 6
wff
[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) |
| 36 | 35, 19 | wex 1779 |
. . . . 5
wff
∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))) |
| 37 | 12, 36 | wa 395 |
. . . 4
wff (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)))) |
| 38 | 37, 10 | cab 2713 |
. . 3
class {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))} |
| 39 | 2, 3, 4, 4, 38 | cmpo 7407 |
. 2
class (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) |
| 40 | 1, 39 | wceq 1540 |
1
wff GraphIso =
(𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) |