Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-grim Structured version   Visualization version   GIF version

Definition df-grim 47748
Description: An isomorphism between two graphs is a bijection between the sets of vertices of the two graphs that preserves adjacency, see definition in [Diestel] p. 3. (Contributed by AV, 19-Apr-2025.)
Assertion
Ref Expression
df-grim GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
Distinct variable group:   𝑒,𝑑,𝑓,𝑔,,𝑖,𝑗

Detailed syntax breakdown of Definition df-grim
StepHypRef Expression
1 cgrim 47745 . 2 class GraphIso
2 vg . . 3 setvar 𝑔
3 vh . . 3 setvar
4 cvv 3488 . . 3 class V
52cv 1536 . . . . . . 7 class 𝑔
6 cvtx 29031 . . . . . . 7 class Vtx
75, 6cfv 6573 . . . . . 6 class (Vtx‘𝑔)
83cv 1536 . . . . . . 7 class
98, 6cfv 6573 . . . . . 6 class (Vtx‘)
10 vf . . . . . . 7 setvar 𝑓
1110cv 1536 . . . . . 6 class 𝑓
127, 9, 11wf1o 6572 . . . . 5 wff 𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘)
13 ve . . . . . . . . . . . 12 setvar 𝑒
1413cv 1536 . . . . . . . . . . 11 class 𝑒
1514cdm 5700 . . . . . . . . . 10 class dom 𝑒
16 vd . . . . . . . . . . . 12 setvar 𝑑
1716cv 1536 . . . . . . . . . . 11 class 𝑑
1817cdm 5700 . . . . . . . . . 10 class dom 𝑑
19 vj . . . . . . . . . . 11 setvar 𝑗
2019cv 1536 . . . . . . . . . 10 class 𝑗
2115, 18, 20wf1o 6572 . . . . . . . . 9 wff 𝑗:dom 𝑒1-1-onto→dom 𝑑
22 vi . . . . . . . . . . . . . 14 setvar 𝑖
2322cv 1536 . . . . . . . . . . . . 13 class 𝑖
2423, 20cfv 6573 . . . . . . . . . . . 12 class (𝑗𝑖)
2524, 17cfv 6573 . . . . . . . . . . 11 class (𝑑‘(𝑗𝑖))
2623, 14cfv 6573 . . . . . . . . . . . 12 class (𝑒𝑖)
2711, 26cima 5703 . . . . . . . . . . 11 class (𝑓 “ (𝑒𝑖))
2825, 27wceq 1537 . . . . . . . . . 10 wff (𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))
2928, 22, 15wral 3067 . . . . . . . . 9 wff 𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))
3021, 29wa 395 . . . . . . . 8 wff (𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)))
31 ciedg 29032 . . . . . . . . 9 class iEdg
328, 31cfv 6573 . . . . . . . 8 class (iEdg‘)
3330, 16, 32wsbc 3804 . . . . . . 7 wff [(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)))
345, 31cfv 6573 . . . . . . 7 class (iEdg‘𝑔)
3533, 13, 34wsbc 3804 . . . . . 6 wff [(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)))
3635, 19wex 1777 . . . . 5 wff 𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)))
3712, 36wa 395 . . . 4 wff (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))
3837, 10cab 2717 . . 3 class {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))}
392, 3, 4, 4, 38cmpo 7450 . 2 class (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
401, 39wceq 1537 1 wff GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
Colors of variables: wff setvar class
This definition is referenced by:  grimfn  47749  grimdmrel  47750  isgrim  47752
  Copyright terms: Public domain W3C validator