![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grimfn | Structured version Visualization version GIF version |
Description: The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025.) |
Ref | Expression |
---|---|
grimfn | ⊢ GraphIso Fn (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-grim 47813 | . 2 ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | |
2 | f1of 6856 | . . . . 5 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) | |
3 | fvex 6927 | . . . . . 6 ⊢ (Vtx‘ℎ) ∈ V | |
4 | fvex 6927 | . . . . . 6 ⊢ (Vtx‘𝑔) ∈ V | |
5 | 3, 4 | elmap 8919 | . . . . 5 ⊢ (𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔)) ↔ 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) |
6 | 2, 5 | sylibr 234 | . . . 4 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔))) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)))) → 𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔))) |
8 | ovex 7471 | . . 3 ⊢ ((Vtx‘ℎ) ↑m (Vtx‘𝑔)) ∈ V | |
9 | 7, 8 | abex 5335 | . 2 ⊢ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))} ∈ V |
10 | 1, 9 | fnmpoi 8103 | 1 ⊢ GraphIso Fn (V × V) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2108 {cab 2714 ∀wral 3061 Vcvv 3481 [wsbc 3794 × cxp 5691 dom cdm 5693 “ cima 5696 Fn wfn 6564 ⟶wf 6565 –1-1-onto→wf1o 6568 ‘cfv 6569 (class class class)co 7438 ↑m cmap 8874 Vtxcvtx 29039 iEdgciedg 29040 GraphIso cgrim 47810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-map 8876 df-grim 47813 |
This theorem is referenced by: brgric 47830 gricrel 47837 |
Copyright terms: Public domain | W3C validator |