Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimfn Structured version   Visualization version   GIF version

Theorem grimfn 47814
Description: The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025.)
Assertion
Ref Expression
grimfn GraphIso Fn (V × V)

Proof of Theorem grimfn
Dummy variables 𝑒 𝑑 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grim 47813 . 2 GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
2 f1of 6856 . . . . 5 (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘))
3 fvex 6927 . . . . . 6 (Vtx‘) ∈ V
4 fvex 6927 . . . . . 6 (Vtx‘𝑔) ∈ V
53, 4elmap 8919 . . . . 5 (𝑓 ∈ ((Vtx‘) ↑m (Vtx‘𝑔)) ↔ 𝑓:(Vtx‘𝑔)⟶(Vtx‘))
62, 5sylibr 234 . . . 4 (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) → 𝑓 ∈ ((Vtx‘) ↑m (Vtx‘𝑔)))
76adantr 480 . . 3 ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)))) → 𝑓 ∈ ((Vtx‘) ↑m (Vtx‘𝑔)))
8 ovex 7471 . . 3 ((Vtx‘) ↑m (Vtx‘𝑔)) ∈ V
97, 8abex 5335 . 2 {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))} ∈ V
101, 9fnmpoi 8103 1 GraphIso Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1778  wcel 2108  {cab 2714  wral 3061  Vcvv 3481  [wsbc 3794   × cxp 5691  dom cdm 5693  cima 5696   Fn wfn 6564  wf 6565  1-1-ontowf1o 6568  cfv 6569  (class class class)co 7438  m cmap 8874  Vtxcvtx 29039  iEdgciedg 29040   GraphIso cgrim 47810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-map 8876  df-grim 47813
This theorem is referenced by:  brgric  47830  gricrel  47837
  Copyright terms: Public domain W3C validator