| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grimfn | Structured version Visualization version GIF version | ||
| Description: The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025.) |
| Ref | Expression |
|---|---|
| grimfn | ⊢ GraphIso Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grim 47810 | . 2 ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | |
| 2 | f1of 6829 | . . . . 5 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) | |
| 3 | fvex 6900 | . . . . . 6 ⊢ (Vtx‘ℎ) ∈ V | |
| 4 | fvex 6900 | . . . . . 6 ⊢ (Vtx‘𝑔) ∈ V | |
| 5 | 3, 4 | elmap 8894 | . . . . 5 ⊢ (𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔)) ↔ 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) |
| 6 | 2, 5 | sylibr 234 | . . . 4 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔))) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)))) → 𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔))) |
| 8 | ovex 7447 | . . 3 ⊢ ((Vtx‘ℎ) ↑m (Vtx‘𝑔)) ∈ V | |
| 9 | 7, 8 | abex 5308 | . 2 ⊢ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))} ∈ V |
| 10 | 1, 9 | fnmpoi 8078 | 1 ⊢ GraphIso Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2712 ∀wral 3050 Vcvv 3464 [wsbc 3772 × cxp 5665 dom cdm 5667 “ cima 5670 Fn wfn 6537 ⟶wf 6538 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 Vtxcvtx 28960 iEdgciedg 28961 GraphIso cgrim 47807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-map 8851 df-grim 47810 |
| This theorem is referenced by: brgric 47827 gricrel 47834 |
| Copyright terms: Public domain | W3C validator |