![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grimfn | Structured version Visualization version GIF version |
Description: The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025.) |
Ref | Expression |
---|---|
grimfn | ⊢ GraphIso Fn (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-grim 47750 | . 2 ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | |
2 | f1of 6864 | . . . . 5 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) | |
3 | fvex 6935 | . . . . . 6 ⊢ (Vtx‘ℎ) ∈ V | |
4 | fvex 6935 | . . . . . 6 ⊢ (Vtx‘𝑔) ∈ V | |
5 | 3, 4 | elmap 8931 | . . . . 5 ⊢ (𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔)) ↔ 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) |
6 | 2, 5 | sylibr 234 | . . . 4 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔))) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)))) → 𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔))) |
8 | ovex 7483 | . . 3 ⊢ ((Vtx‘ℎ) ↑m (Vtx‘𝑔)) ∈ V | |
9 | 7, 8 | abex 5344 | . 2 ⊢ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))} ∈ V |
10 | 1, 9 | fnmpoi 8113 | 1 ⊢ GraphIso Fn (V × V) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∀wral 3067 Vcvv 3488 [wsbc 3804 × cxp 5698 dom cdm 5700 “ cima 5703 Fn wfn 6570 ⟶wf 6571 –1-1-onto→wf1o 6574 ‘cfv 6575 (class class class)co 7450 ↑m cmap 8886 Vtxcvtx 29033 iEdgciedg 29034 GraphIso cgrim 47747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-map 8888 df-grim 47750 |
This theorem is referenced by: brgric 47767 gricrel 47774 |
Copyright terms: Public domain | W3C validator |