Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimfn Structured version   Visualization version   GIF version

Theorem grimfn 47751
Description: The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025.)
Assertion
Ref Expression
grimfn GraphIso Fn (V × V)

Proof of Theorem grimfn
Dummy variables 𝑒 𝑑 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grim 47750 . 2 GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
2 f1of 6864 . . . . 5 (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘))
3 fvex 6935 . . . . . 6 (Vtx‘) ∈ V
4 fvex 6935 . . . . . 6 (Vtx‘𝑔) ∈ V
53, 4elmap 8931 . . . . 5 (𝑓 ∈ ((Vtx‘) ↑m (Vtx‘𝑔)) ↔ 𝑓:(Vtx‘𝑔)⟶(Vtx‘))
62, 5sylibr 234 . . . 4 (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) → 𝑓 ∈ ((Vtx‘) ↑m (Vtx‘𝑔)))
76adantr 480 . . 3 ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)))) → 𝑓 ∈ ((Vtx‘) ↑m (Vtx‘𝑔)))
8 ovex 7483 . . 3 ((Vtx‘) ↑m (Vtx‘𝑔)) ∈ V
97, 8abex 5344 . 2 {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))} ∈ V
101, 9fnmpoi 8113 1 GraphIso Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  Vcvv 3488  [wsbc 3804   × cxp 5698  dom cdm 5700  cima 5703   Fn wfn 6570  wf 6571  1-1-ontowf1o 6574  cfv 6575  (class class class)co 7450  m cmap 8886  Vtxcvtx 29033  iEdgciedg 29034   GraphIso cgrim 47747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-map 8888  df-grim 47750
This theorem is referenced by:  brgric  47767  gricrel  47774
  Copyright terms: Public domain W3C validator