| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grimfn | Structured version Visualization version GIF version | ||
| Description: The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025.) |
| Ref | Expression |
|---|---|
| grimfn | ⊢ GraphIso Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grim 47851 | . 2 ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | |
| 2 | f1of 6782 | . . . . 5 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) | |
| 3 | fvex 6853 | . . . . . 6 ⊢ (Vtx‘ℎ) ∈ V | |
| 4 | fvex 6853 | . . . . . 6 ⊢ (Vtx‘𝑔) ∈ V | |
| 5 | 3, 4 | elmap 8821 | . . . . 5 ⊢ (𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔)) ↔ 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) |
| 6 | 2, 5 | sylibr 234 | . . . 4 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔))) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖)))) → 𝑓 ∈ ((Vtx‘ℎ) ↑m (Vtx‘𝑔))) |
| 8 | ovex 7402 | . . 3 ⊢ ((Vtx‘ℎ) ↑m (Vtx‘𝑔)) ∈ V | |
| 9 | 7, 8 | abex 5276 | . 2 ⊢ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))} ∈ V |
| 10 | 1, 9 | fnmpoi 8028 | 1 ⊢ GraphIso Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∀wral 3044 Vcvv 3444 [wsbc 3750 × cxp 5629 dom cdm 5631 “ cima 5634 Fn wfn 6494 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Vtxcvtx 28899 iEdgciedg 28900 GraphIso cgrim 47848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-grim 47851 |
| This theorem is referenced by: brgric 47885 gricrel 47892 |
| Copyright terms: Public domain | W3C validator |