Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimfn Structured version   Visualization version   GIF version

Theorem grimfn 47834
Description: The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025.)
Assertion
Ref Expression
grimfn GraphIso Fn (V × V)

Proof of Theorem grimfn
Dummy variables 𝑒 𝑑 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grim 47833 . 2 GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
2 f1of 6807 . . . . 5 (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘))
3 fvex 6878 . . . . . 6 (Vtx‘) ∈ V
4 fvex 6878 . . . . . 6 (Vtx‘𝑔) ∈ V
53, 4elmap 8848 . . . . 5 (𝑓 ∈ ((Vtx‘) ↑m (Vtx‘𝑔)) ↔ 𝑓:(Vtx‘𝑔)⟶(Vtx‘))
62, 5sylibr 234 . . . 4 (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) → 𝑓 ∈ ((Vtx‘) ↑m (Vtx‘𝑔)))
76adantr 480 . . 3 ((𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖)))) → 𝑓 ∈ ((Vtx‘) ↑m (Vtx‘𝑔)))
8 ovex 7427 . . 3 ((Vtx‘) ↑m (Vtx‘𝑔)) ∈ V
97, 8abex 5289 . 2 {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))} ∈ V
101, 9fnmpoi 8058 1 GraphIso Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wral 3046  Vcvv 3455  [wsbc 3761   × cxp 5644  dom cdm 5646  cima 5649   Fn wfn 6514  wf 6515  1-1-ontowf1o 6518  cfv 6519  (class class class)co 7394  m cmap 8803  Vtxcvtx 28930  iEdgciedg 28931   GraphIso cgrim 47830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-grim 47833
This theorem is referenced by:  brgric  47867  gricrel  47874
  Copyright terms: Public domain W3C validator