HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0op Structured version   Visualization version   GIF version

Definition df-h0op 31720
Description: Define the Hilbert space zero operator. See df0op2 31724 for alternate definition. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0op 0hop = (proj‘0)

Detailed syntax breakdown of Definition df-h0op
StepHypRef Expression
1 ch0o 30915 . 2 class 0hop
2 c0h 30907 . . 3 class 0
3 cpjh 30909 . . 3 class proj
42, 3cfv 6476 . 2 class (proj‘0)
51, 4wceq 1541 1 wff 0hop = (proj‘0)
Colors of variables: wff setvar class
This definition is referenced by:  ho0val  31722  ho0f  31723  pjbdlni  32121
  Copyright terms: Public domain W3C validator