HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0op Structured version   Visualization version   GIF version

Definition df-h0op 30110
Description: Define the Hilbert space zero operator. See df0op2 30114 for alternate definition. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0op 0hop = (proj‘0)

Detailed syntax breakdown of Definition df-h0op
StepHypRef Expression
1 ch0o 29305 . 2 class 0hop
2 c0h 29297 . . 3 class 0
3 cpjh 29299 . . 3 class proj
42, 3cfv 6433 . 2 class (proj‘0)
51, 4wceq 1539 1 wff 0hop = (proj‘0)
Colors of variables: wff setvar class
This definition is referenced by:  ho0val  30112  ho0f  30113  pjbdlni  30511
  Copyright terms: Public domain W3C validator