| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-h0op | Structured version Visualization version GIF version | ||
| Description: Define the Hilbert space zero operator. See df0op2 31771 for alternate definition. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-h0op | ⊢ 0hop = (projℎ‘0ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0o 30962 | . 2 class 0hop | |
| 2 | c0h 30954 | . . 3 class 0ℋ | |
| 3 | cpjh 30956 | . . 3 class projℎ | |
| 4 | 2, 3 | cfv 6561 | . 2 class (projℎ‘0ℋ) |
| 5 | 1, 4 | wceq 1540 | 1 wff 0hop = (projℎ‘0ℋ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ho0val 31769 ho0f 31770 pjbdlni 32168 |
| Copyright terms: Public domain | W3C validator |