![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ho0val | Structured version Visualization version GIF version |
Description: Value of the zero Hilbert space operator (null projector). Remark in [Beran] p. 111. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ho0val | ⊢ (𝐴 ∈ ℋ → ( 0hop ‘𝐴) = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | choc1 31369 | . . . . . 6 ⊢ (⊥‘ ℋ) = 0ℋ | |
2 | 1 | fveq2i 6914 | . . . . 5 ⊢ (projℎ‘(⊥‘ ℋ)) = (projℎ‘0ℋ) |
3 | df-h0op 31790 | . . . . 5 ⊢ 0hop = (projℎ‘0ℋ) | |
4 | 2, 3 | eqtr4i 2767 | . . . 4 ⊢ (projℎ‘(⊥‘ ℋ)) = 0hop |
5 | 4 | fveq1i 6912 | . . 3 ⊢ ((projℎ‘(⊥‘ ℋ))‘𝐴) = ( 0hop ‘𝐴) |
6 | helch 31285 | . . . 4 ⊢ ℋ ∈ Cℋ | |
7 | pjo 31713 | . . . 4 ⊢ (( ℋ ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘(⊥‘ ℋ))‘𝐴) = (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘ ℋ)‘𝐴))) | |
8 | 6, 7 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℋ → ((projℎ‘(⊥‘ ℋ))‘𝐴) = (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘ ℋ)‘𝐴))) |
9 | 5, 8 | eqtr3id 2790 | . 2 ⊢ (𝐴 ∈ ℋ → ( 0hop ‘𝐴) = (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘ ℋ)‘𝐴))) |
10 | 6 | pjhcli 31460 | . . 3 ⊢ (𝐴 ∈ ℋ → ((projℎ‘ ℋ)‘𝐴) ∈ ℋ) |
11 | hvsubid 31068 | . . 3 ⊢ (((projℎ‘ ℋ)‘𝐴) ∈ ℋ → (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘ ℋ)‘𝐴)) = 0ℎ) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝐴 ∈ ℋ → (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘ ℋ)‘𝐴)) = 0ℎ) |
13 | 9, 12 | eqtrd 2776 | 1 ⊢ (𝐴 ∈ ℋ → ( 0hop ‘𝐴) = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 ‘cfv 6566 (class class class)co 7435 ℋchba 30961 0ℎc0v 30966 −ℎ cmv 30967 Cℋ cch 30971 ⊥cort 30972 0ℋc0h 30977 projℎcpjh 30979 0hop ch0o 30985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 ax-cc 10479 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 ax-addf 11238 ax-mulf 11239 ax-hilex 31041 ax-hfvadd 31042 ax-hvcom 31043 ax-hvass 31044 ax-hv0cl 31045 ax-hvaddid 31046 ax-hfvmul 31047 ax-hvmulid 31048 ax-hvmulass 31049 ax-hvdistr1 31050 ax-hvdistr2 31051 ax-hvmul0 31052 ax-hfi 31121 ax-his1 31124 ax-his2 31125 ax-his3 31126 ax-his4 31127 ax-hcompl 31244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-of 7701 df-om 7892 df-1st 8019 df-2nd 8020 df-supp 8191 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-oadd 8515 df-omul 8516 df-er 8750 df-map 8873 df-pm 8874 df-ixp 8943 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-fsupp 9406 df-fi 9455 df-sup 9486 df-inf 9487 df-oi 9554 df-card 9983 df-acn 9986 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-ioo 13394 df-ico 13396 df-icc 13397 df-fz 13551 df-fzo 13698 df-fl 13835 df-seq 14046 df-exp 14106 df-hash 14373 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-clim 15527 df-rlim 15528 df-sum 15726 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-starv 17319 df-sca 17320 df-vsca 17321 df-ip 17322 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-hom 17328 df-cco 17329 df-rest 17475 df-topn 17476 df-0g 17494 df-gsum 17495 df-topgen 17496 df-pt 17497 df-prds 17500 df-xrs 17555 df-qtop 17560 df-imas 17561 df-xps 17563 df-mre 17637 df-mrc 17638 df-acs 17640 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18816 df-mulg 19105 df-cntz 19354 df-cmn 19821 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-fbas 21385 df-fg 21386 df-cnfld 21389 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-cld 23049 df-ntr 23050 df-cls 23051 df-nei 23128 df-cn 23257 df-cnp 23258 df-lm 23259 df-haus 23345 df-tx 23592 df-hmeo 23785 df-fil 23876 df-fm 23968 df-flim 23969 df-flf 23970 df-xms 24352 df-ms 24353 df-tms 24354 df-cfil 25311 df-cau 25312 df-cmet 25313 df-grpo 30535 df-gid 30536 df-ginv 30537 df-gdiv 30538 df-ablo 30587 df-vc 30601 df-nv 30634 df-va 30637 df-ba 30638 df-sm 30639 df-0v 30640 df-vs 30641 df-nmcv 30642 df-ims 30643 df-dip 30743 df-ssp 30764 df-ph 30855 df-cbn 30905 df-hnorm 31010 df-hba 31011 df-hvsub 31013 df-hlim 31014 df-hcau 31015 df-sh 31249 df-ch 31263 df-oc 31294 df-ch0 31295 df-shs 31350 df-pjh 31437 df-h0op 31790 |
This theorem is referenced by: df0op2 31794 hoaddridi 31828 ho0coi 31830 0cnop 32021 0hmop 32025 nmop0 32028 adj0 32036 nmlnop0iALT 32037 lnopco0i 32046 lnopeq0i 32049 nmopcoi 32137 leop3 32167 leoprf2 32169 leoprf 32170 idleop 32173 pjorthcoi 32211 |
Copyright terms: Public domain | W3C validator |