![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ho0val | Structured version Visualization version GIF version |
Description: Value of the zero Hilbert space operator (null projector). Remark in [Beran] p. 111. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ho0val | ⊢ (𝐴 ∈ ℋ → ( 0hop ‘𝐴) = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | choc1 31361 | . . . . . 6 ⊢ (⊥‘ ℋ) = 0ℋ | |
2 | 1 | fveq2i 6925 | . . . . 5 ⊢ (projℎ‘(⊥‘ ℋ)) = (projℎ‘0ℋ) |
3 | df-h0op 31782 | . . . . 5 ⊢ 0hop = (projℎ‘0ℋ) | |
4 | 2, 3 | eqtr4i 2771 | . . . 4 ⊢ (projℎ‘(⊥‘ ℋ)) = 0hop |
5 | 4 | fveq1i 6923 | . . 3 ⊢ ((projℎ‘(⊥‘ ℋ))‘𝐴) = ( 0hop ‘𝐴) |
6 | helch 31277 | . . . 4 ⊢ ℋ ∈ Cℋ | |
7 | pjo 31705 | . . . 4 ⊢ (( ℋ ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘(⊥‘ ℋ))‘𝐴) = (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘ ℋ)‘𝐴))) | |
8 | 6, 7 | mpan 689 | . . 3 ⊢ (𝐴 ∈ ℋ → ((projℎ‘(⊥‘ ℋ))‘𝐴) = (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘ ℋ)‘𝐴))) |
9 | 5, 8 | eqtr3id 2794 | . 2 ⊢ (𝐴 ∈ ℋ → ( 0hop ‘𝐴) = (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘ ℋ)‘𝐴))) |
10 | 6 | pjhcli 31452 | . . 3 ⊢ (𝐴 ∈ ℋ → ((projℎ‘ ℋ)‘𝐴) ∈ ℋ) |
11 | hvsubid 31060 | . . 3 ⊢ (((projℎ‘ ℋ)‘𝐴) ∈ ℋ → (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘ ℋ)‘𝐴)) = 0ℎ) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝐴 ∈ ℋ → (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘ ℋ)‘𝐴)) = 0ℎ) |
13 | 9, 12 | eqtrd 2780 | 1 ⊢ (𝐴 ∈ ℋ → ( 0hop ‘𝐴) = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6575 (class class class)co 7450 ℋchba 30953 0ℎc0v 30958 −ℎ cmv 30959 Cℋ cch 30963 ⊥cort 30964 0ℋc0h 30969 projℎcpjh 30971 0hop ch0o 30977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-inf2 9712 ax-cc 10506 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 ax-addf 11265 ax-mulf 11266 ax-hilex 31033 ax-hfvadd 31034 ax-hvcom 31035 ax-hvass 31036 ax-hv0cl 31037 ax-hvaddid 31038 ax-hfvmul 31039 ax-hvmulid 31040 ax-hvmulass 31041 ax-hvdistr1 31042 ax-hvdistr2 31043 ax-hvmul0 31044 ax-hfi 31113 ax-his1 31116 ax-his2 31117 ax-his3 31118 ax-his4 31119 ax-hcompl 31236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-oadd 8528 df-omul 8529 df-er 8765 df-map 8888 df-pm 8889 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-fi 9482 df-sup 9513 df-inf 9514 df-oi 9581 df-card 10010 df-acn 10013 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-q 13016 df-rp 13060 df-xneg 13177 df-xadd 13178 df-xmul 13179 df-ioo 13413 df-ico 13415 df-icc 13416 df-fz 13570 df-fzo 13714 df-fl 13845 df-seq 14055 df-exp 14115 df-hash 14382 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-clim 15536 df-rlim 15537 df-sum 15737 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-starv 17328 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-unif 17336 df-hom 17337 df-cco 17338 df-rest 17484 df-topn 17485 df-0g 17503 df-gsum 17504 df-topgen 17505 df-pt 17506 df-prds 17509 df-xrs 17564 df-qtop 17569 df-imas 17570 df-xps 17572 df-mre 17646 df-mrc 17647 df-acs 17649 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-submnd 18821 df-mulg 19110 df-cntz 19359 df-cmn 19826 df-psmet 21381 df-xmet 21382 df-met 21383 df-bl 21384 df-mopn 21385 df-fbas 21386 df-fg 21387 df-cnfld 21390 df-top 22923 df-topon 22940 df-topsp 22962 df-bases 22976 df-cld 23050 df-ntr 23051 df-cls 23052 df-nei 23129 df-cn 23258 df-cnp 23259 df-lm 23260 df-haus 23346 df-tx 23593 df-hmeo 23786 df-fil 23877 df-fm 23969 df-flim 23970 df-flf 23971 df-xms 24353 df-ms 24354 df-tms 24355 df-cfil 25310 df-cau 25311 df-cmet 25312 df-grpo 30527 df-gid 30528 df-ginv 30529 df-gdiv 30530 df-ablo 30579 df-vc 30593 df-nv 30626 df-va 30629 df-ba 30630 df-sm 30631 df-0v 30632 df-vs 30633 df-nmcv 30634 df-ims 30635 df-dip 30735 df-ssp 30756 df-ph 30847 df-cbn 30897 df-hnorm 31002 df-hba 31003 df-hvsub 31005 df-hlim 31006 df-hcau 31007 df-sh 31241 df-ch 31255 df-oc 31286 df-ch0 31287 df-shs 31342 df-pjh 31429 df-h0op 31782 |
This theorem is referenced by: df0op2 31786 hoaddridi 31820 ho0coi 31822 0cnop 32013 0hmop 32017 nmop0 32020 adj0 32028 nmlnop0iALT 32029 lnopco0i 32038 lnopeq0i 32041 nmopcoi 32129 leop3 32159 leoprf2 32161 leoprf 32162 idleop 32165 pjorthcoi 32203 |
Copyright terms: Public domain | W3C validator |