| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-iop | Structured version Visualization version GIF version | ||
| Description: Define the Hilbert space identity operator. See dfiop2 31682 for alternate definition. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-iop | ⊢ Iop = (projℎ‘ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chio 30873 | . 2 class Iop | |
| 2 | chba 30848 | . . 3 class ℋ | |
| 3 | cpjh 30866 | . . 3 class projℎ | |
| 4 | 2, 3 | cfv 6511 | . 2 class (projℎ‘ ℋ) |
| 5 | 1, 4 | wceq 1540 | 1 wff Iop = (projℎ‘ ℋ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfiop2 31682 hoival 31684 hoid1i 31718 hoid1ri 31719 pjclem1 32124 pjclem3 32126 pjci 32129 |
| Copyright terms: Public domain | W3C validator |