HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-iop Structured version   Visualization version   GIF version

Definition df-iop 31033
Description: Define the Hilbert space identity operator. See dfiop2 31037 for alternate definition. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-iop Iop = (proj‘ ℋ)

Detailed syntax breakdown of Definition df-iop
StepHypRef Expression
1 chio 30228 . 2 class Iop
2 chba 30203 . . 3 class
3 cpjh 30221 . . 3 class proj
42, 3cfv 6544 . 2 class (proj‘ ℋ)
51, 4wceq 1542 1 wff Iop = (proj‘ ℋ)
Colors of variables: wff setvar class
This definition is referenced by:  dfiop2  31037  hoival  31039  hoid1i  31073  hoid1ri  31074  pjclem1  31479  pjclem3  31481  pjci  31484
  Copyright terms: Public domain W3C validator