Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-iop | Structured version Visualization version GIF version |
Description: Define the Hilbert space identity operator. See dfiop2 30115 for alternate definition. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-iop | ⊢ Iop = (projℎ‘ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chio 29306 | . 2 class Iop | |
2 | chba 29281 | . . 3 class ℋ | |
3 | cpjh 29299 | . . 3 class projℎ | |
4 | 2, 3 | cfv 6433 | . 2 class (projℎ‘ ℋ) |
5 | 1, 4 | wceq 1539 | 1 wff Iop = (projℎ‘ ℋ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfiop2 30115 hoival 30117 hoid1i 30151 hoid1ri 30152 pjclem1 30557 pjclem3 30559 pjci 30562 |
Copyright terms: Public domain | W3C validator |