HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-iop Structured version   Visualization version   GIF version

Definition df-iop 31768
Description: Define the Hilbert space identity operator. See dfiop2 31772 for alternate definition. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-iop Iop = (proj‘ ℋ)

Detailed syntax breakdown of Definition df-iop
StepHypRef Expression
1 chio 30963 . 2 class Iop
2 chba 30938 . . 3 class
3 cpjh 30956 . . 3 class proj
42, 3cfv 6561 . 2 class (proj‘ ℋ)
51, 4wceq 1540 1 wff Iop = (proj‘ ℋ)
Colors of variables: wff setvar class
This definition is referenced by:  dfiop2  31772  hoival  31774  hoid1i  31808  hoid1ri  31809  pjclem1  32214  pjclem3  32216  pjci  32219
  Copyright terms: Public domain W3C validator