| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-iop | Structured version Visualization version GIF version | ||
| Description: Define the Hilbert space identity operator. See dfiop2 31734 for alternate definition. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-iop | ⊢ Iop = (projℎ‘ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chio 30925 | . 2 class Iop | |
| 2 | chba 30900 | . . 3 class ℋ | |
| 3 | cpjh 30918 | . . 3 class projℎ | |
| 4 | 2, 3 | cfv 6531 | . 2 class (projℎ‘ ℋ) |
| 5 | 1, 4 | wceq 1540 | 1 wff Iop = (projℎ‘ ℋ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfiop2 31734 hoival 31736 hoid1i 31770 hoid1ri 31771 pjclem1 32176 pjclem3 32178 pjci 32181 |
| Copyright terms: Public domain | W3C validator |