![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-iop | Structured version Visualization version GIF version |
Description: Define the Hilbert space identity operator. See dfiop2 31686 for alternate definition. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-iop | ⊢ Iop = (projℎ‘ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chio 30877 | . 2 class Iop | |
2 | chba 30852 | . . 3 class ℋ | |
3 | cpjh 30870 | . . 3 class projℎ | |
4 | 2, 3 | cfv 6554 | . 2 class (projℎ‘ ℋ) |
5 | 1, 4 | wceq 1534 | 1 wff Iop = (projℎ‘ ℋ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfiop2 31686 hoival 31688 hoid1i 31722 hoid1ri 31723 pjclem1 32128 pjclem3 32130 pjci 32133 |
Copyright terms: Public domain | W3C validator |