HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hodcl Structured version   Visualization version   GIF version

Theorem hodcl 30088
Description: Closure of the difference of two Hilbert space operators. (Contributed by NM, 15-Nov-2002.) (New usage is discouraged.)
Assertion
Ref Expression
hodcl (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) ∈ ℋ)

Proof of Theorem hodcl
StepHypRef Expression
1 hodval 30083 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))
2 ffvelrn 6953 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝑆𝐴) ∈ ℋ)
323adant2 1129 . . . 4 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝑆𝐴) ∈ ℋ)
4 ffvelrn 6953 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝑇𝐴) ∈ ℋ)
543adant1 1128 . . . 4 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝑇𝐴) ∈ ℋ)
6 hvsubcl 29358 . . . 4 (((𝑆𝐴) ∈ ℋ ∧ (𝑇𝐴) ∈ ℋ) → ((𝑆𝐴) − (𝑇𝐴)) ∈ ℋ)
73, 5, 6syl2anc 583 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆𝐴) − (𝑇𝐴)) ∈ ℋ)
81, 7eqeltrd 2840 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) ∈ ℋ)
983expa 1116 1 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2109  wf 6426  cfv 6430  (class class class)co 7268  chba 29260   cmv 29266  op chod 29281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-hilex 29340  ax-hfvadd 29341  ax-hfvmul 29346
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-ltxr 10998  df-sub 11190  df-neg 11191  df-hvsub 29312  df-hodif 30073
This theorem is referenced by:  hodcli  30104
  Copyright terms: Public domain W3C validator