Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ho0f | Structured version Visualization version GIF version |
Description: Functionality of the zero Hilbert space operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ho0f | ⊢ 0hop : ℋ⟶ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h0elch 29666 | . . 3 ⊢ 0ℋ ∈ Cℋ | |
2 | 1 | pjfi 30115 | . 2 ⊢ (projℎ‘0ℋ): ℋ⟶ ℋ |
3 | df-h0op 30159 | . . 3 ⊢ 0hop = (projℎ‘0ℋ) | |
4 | 3 | feq1i 6621 | . 2 ⊢ ( 0hop : ℋ⟶ ℋ ↔ (projℎ‘0ℋ): ℋ⟶ ℋ) |
5 | 2, 4 | mpbir 230 | 1 ⊢ 0hop : ℋ⟶ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ⟶wf 6454 ‘cfv 6458 ℋchba 29330 0ℋc0h 29346 projℎcpjh 29348 0hop ch0o 29354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cc 10241 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 ax-addf 11000 ax-mulf 11001 ax-hilex 29410 ax-hfvadd 29411 ax-hvcom 29412 ax-hvass 29413 ax-hv0cl 29414 ax-hvaddid 29415 ax-hfvmul 29416 ax-hvmulid 29417 ax-hvmulass 29418 ax-hvdistr1 29419 ax-hvdistr2 29420 ax-hvmul0 29421 ax-hfi 29490 ax-his1 29493 ax-his2 29494 ax-his3 29495 ax-his4 29496 ax-hcompl 29613 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-oadd 8332 df-omul 8333 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9177 df-fi 9218 df-sup 9249 df-inf 9250 df-oi 9317 df-card 9745 df-acn 9748 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-q 12739 df-rp 12781 df-xneg 12898 df-xadd 12899 df-xmul 12900 df-ioo 13133 df-ico 13135 df-icc 13136 df-fz 13290 df-fzo 13433 df-fl 13562 df-seq 13772 df-exp 13833 df-hash 14095 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-clim 15246 df-rlim 15247 df-sum 15447 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-starv 17026 df-sca 17027 df-vsca 17028 df-ip 17029 df-tset 17030 df-ple 17031 df-ds 17033 df-unif 17034 df-hom 17035 df-cco 17036 df-rest 17182 df-topn 17183 df-0g 17201 df-gsum 17202 df-topgen 17203 df-pt 17204 df-prds 17207 df-xrs 17262 df-qtop 17267 df-imas 17268 df-xps 17270 df-mre 17344 df-mrc 17345 df-acs 17347 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-submnd 18480 df-mulg 18750 df-cntz 18972 df-cmn 19437 df-psmet 20638 df-xmet 20639 df-met 20640 df-bl 20641 df-mopn 20642 df-fbas 20643 df-fg 20644 df-cnfld 20647 df-top 22092 df-topon 22109 df-topsp 22131 df-bases 22145 df-cld 22219 df-ntr 22220 df-cls 22221 df-nei 22298 df-cn 22427 df-cnp 22428 df-lm 22429 df-haus 22515 df-tx 22762 df-hmeo 22955 df-fil 23046 df-fm 23138 df-flim 23139 df-flf 23140 df-xms 23522 df-ms 23523 df-tms 23524 df-cfil 24468 df-cau 24469 df-cmet 24470 df-grpo 28904 df-gid 28905 df-ginv 28906 df-gdiv 28907 df-ablo 28956 df-vc 28970 df-nv 29003 df-va 29006 df-ba 29007 df-sm 29008 df-0v 29009 df-vs 29010 df-nmcv 29011 df-ims 29012 df-dip 29112 df-ssp 29133 df-ph 29224 df-cbn 29274 df-hnorm 29379 df-hba 29380 df-hvsub 29382 df-hlim 29383 df-hcau 29384 df-sh 29618 df-ch 29632 df-oc 29663 df-ch0 29664 df-shs 29719 df-pjh 29806 df-h0op 30159 |
This theorem is referenced by: df0op2 30163 hosubcl 30184 hoaddcom 30185 hoaddass 30193 hocsubdir 30196 hoaddid1i 30197 hodidi 30198 ho0coi 30199 hoaddid1 30202 hodid 30203 ho0subi 30206 ho0sub 30208 hosubid1 30209 honegsub 30210 hoaddsubass 30226 hosd1i 30233 hosubeq0i 30237 0cnop 30390 0hmop 30394 nmop0 30397 hoddi 30401 adj0 30405 nmlnop0iALT 30406 lnopco0i 30415 pjorthcoi 30580 |
Copyright terms: Public domain | W3C validator |