![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ho0f | Structured version Visualization version GIF version |
Description: Functionality of the zero Hilbert space operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ho0f | ⊢ 0hop : ℋ⟶ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h0elch 28684 | . . 3 ⊢ 0ℋ ∈ Cℋ | |
2 | 1 | pjfi 29135 | . 2 ⊢ (projℎ‘0ℋ): ℋ⟶ ℋ |
3 | df-h0op 29179 | . . 3 ⊢ 0hop = (projℎ‘0ℋ) | |
4 | 3 | feq1i 6282 | . 2 ⊢ ( 0hop : ℋ⟶ ℋ ↔ (projℎ‘0ℋ): ℋ⟶ ℋ) |
5 | 2, 4 | mpbir 223 | 1 ⊢ 0hop : ℋ⟶ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ⟶wf 6131 ‘cfv 6135 ℋchba 28348 0ℋc0h 28364 projℎcpjh 28366 0hop ch0o 28372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cc 9592 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 ax-hilex 28428 ax-hfvadd 28429 ax-hvcom 28430 ax-hvass 28431 ax-hv0cl 28432 ax-hvaddid 28433 ax-hfvmul 28434 ax-hvmulid 28435 ax-hvmulass 28436 ax-hvdistr1 28437 ax-hvdistr2 28438 ax-hvmul0 28439 ax-hfi 28508 ax-his1 28511 ax-his2 28512 ax-his3 28513 ax-his4 28514 ax-hcompl 28631 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-omul 7848 df-er 8026 df-map 8142 df-pm 8143 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-fi 8605 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-acn 9101 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ioo 12491 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-fl 12912 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-rlim 14628 df-sum 14825 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-rest 16469 df-topn 16470 df-0g 16488 df-gsum 16489 df-topgen 16490 df-pt 16491 df-prds 16494 df-xrs 16548 df-qtop 16553 df-imas 16554 df-xps 16556 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-mulg 17928 df-cntz 18133 df-cmn 18581 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-fbas 20139 df-fg 20140 df-cnfld 20143 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cld 21231 df-ntr 21232 df-cls 21233 df-nei 21310 df-cn 21439 df-cnp 21440 df-lm 21441 df-haus 21527 df-tx 21774 df-hmeo 21967 df-fil 22058 df-fm 22150 df-flim 22151 df-flf 22152 df-xms 22533 df-ms 22534 df-tms 22535 df-cfil 23461 df-cau 23462 df-cmet 23463 df-grpo 27920 df-gid 27921 df-ginv 27922 df-gdiv 27923 df-ablo 27972 df-vc 27986 df-nv 28019 df-va 28022 df-ba 28023 df-sm 28024 df-0v 28025 df-vs 28026 df-nmcv 28027 df-ims 28028 df-dip 28128 df-ssp 28149 df-ph 28240 df-cbn 28291 df-hnorm 28397 df-hba 28398 df-hvsub 28400 df-hlim 28401 df-hcau 28402 df-sh 28636 df-ch 28650 df-oc 28681 df-ch0 28682 df-shs 28739 df-pjh 28826 df-h0op 29179 |
This theorem is referenced by: df0op2 29183 hosubcl 29204 hoaddcom 29205 hoaddass 29213 hocsubdir 29216 hoaddid1i 29217 hodidi 29218 ho0coi 29219 hoaddid1 29222 hodid 29223 ho0subi 29226 ho0sub 29228 hosubid1 29229 honegsub 29230 hoaddsubass 29246 hosd1i 29253 hosubeq0i 29257 0cnop 29410 0hmop 29414 nmop0 29417 hoddi 29421 adj0 29425 nmlnop0iALT 29426 lnopco0i 29435 pjorthcoi 29600 |
Copyright terms: Public domain | W3C validator |