Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df0op2 | Structured version Visualization version GIF version |
Description: Alternate definition of Hilbert space zero operator. (Contributed by NM, 7-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df0op2 | ⊢ 0hop = ( ℋ × 0ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ho0f 29837 | . . . . 5 ⊢ 0hop : ℋ⟶ ℋ | |
2 | ffn 6550 | . . . . 5 ⊢ ( 0hop : ℋ⟶ ℋ → 0hop Fn ℋ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 0hop Fn ℋ |
4 | ho0val 29836 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ( 0hop ‘𝑥) = 0ℎ) | |
5 | 4 | rgen 3071 | . . . 4 ⊢ ∀𝑥 ∈ ℋ ( 0hop ‘𝑥) = 0ℎ |
6 | fconstfv 7033 | . . . 4 ⊢ ( 0hop : ℋ⟶{0ℎ} ↔ ( 0hop Fn ℋ ∧ ∀𝑥 ∈ ℋ ( 0hop ‘𝑥) = 0ℎ)) | |
7 | 3, 5, 6 | mpbir2an 711 | . . 3 ⊢ 0hop : ℋ⟶{0ℎ} |
8 | ax-hv0cl 29089 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
9 | 8 | elexi 3432 | . . . 4 ⊢ 0ℎ ∈ V |
10 | 9 | fconst2 7025 | . . 3 ⊢ ( 0hop : ℋ⟶{0ℎ} ↔ 0hop = ( ℋ × {0ℎ})) |
11 | 7, 10 | mpbi 233 | . 2 ⊢ 0hop = ( ℋ × {0ℎ}) |
12 | df-ch0 29339 | . . 3 ⊢ 0ℋ = {0ℎ} | |
13 | 12 | xpeq2i 5583 | . 2 ⊢ ( ℋ × 0ℋ) = ( ℋ × {0ℎ}) |
14 | 11, 13 | eqtr4i 2768 | 1 ⊢ 0hop = ( ℋ × 0ℋ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∀wral 3061 {csn 4546 × cxp 5554 Fn wfn 6380 ⟶wf 6381 ‘cfv 6385 ℋchba 29005 0ℎc0v 29010 0ℋc0h 29021 0hop ch0o 29029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-inf2 9261 ax-cc 10054 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-pre-sup 10812 ax-addf 10813 ax-mulf 10814 ax-hilex 29085 ax-hfvadd 29086 ax-hvcom 29087 ax-hvass 29088 ax-hv0cl 29089 ax-hvaddid 29090 ax-hfvmul 29091 ax-hvmulid 29092 ax-hvmulass 29093 ax-hvdistr1 29094 ax-hvdistr2 29095 ax-hvmul0 29096 ax-hfi 29165 ax-his1 29168 ax-his2 29169 ax-his3 29170 ax-his4 29171 ax-hcompl 29288 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-iin 4912 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-se 5515 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-isom 6394 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-of 7474 df-om 7650 df-1st 7766 df-2nd 7767 df-supp 7909 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-2o 8208 df-oadd 8211 df-omul 8212 df-er 8396 df-map 8515 df-pm 8516 df-ixp 8584 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-fsupp 8991 df-fi 9032 df-sup 9063 df-inf 9064 df-oi 9131 df-card 9560 df-acn 9563 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-3 11899 df-4 11900 df-5 11901 df-6 11902 df-7 11903 df-8 11904 df-9 11905 df-n0 12096 df-z 12182 df-dec 12299 df-uz 12444 df-q 12550 df-rp 12592 df-xneg 12709 df-xadd 12710 df-xmul 12711 df-ioo 12944 df-ico 12946 df-icc 12947 df-fz 13101 df-fzo 13244 df-fl 13372 df-seq 13580 df-exp 13641 df-hash 13902 df-cj 14667 df-re 14668 df-im 14669 df-sqrt 14803 df-abs 14804 df-clim 15054 df-rlim 15055 df-sum 15255 df-struct 16705 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-mulr 16821 df-starv 16822 df-sca 16823 df-vsca 16824 df-ip 16825 df-tset 16826 df-ple 16827 df-ds 16829 df-unif 16830 df-hom 16831 df-cco 16832 df-rest 16932 df-topn 16933 df-0g 16951 df-gsum 16952 df-topgen 16953 df-pt 16954 df-prds 16957 df-xrs 17012 df-qtop 17017 df-imas 17018 df-xps 17020 df-mre 17094 df-mrc 17095 df-acs 17097 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-submnd 18224 df-mulg 18494 df-cntz 18716 df-cmn 19177 df-psmet 20360 df-xmet 20361 df-met 20362 df-bl 20363 df-mopn 20364 df-fbas 20365 df-fg 20366 df-cnfld 20369 df-top 21796 df-topon 21813 df-topsp 21835 df-bases 21848 df-cld 21921 df-ntr 21922 df-cls 21923 df-nei 22000 df-cn 22129 df-cnp 22130 df-lm 22131 df-haus 22217 df-tx 22464 df-hmeo 22657 df-fil 22748 df-fm 22840 df-flim 22841 df-flf 22842 df-xms 23223 df-ms 23224 df-tms 23225 df-cfil 24157 df-cau 24158 df-cmet 24159 df-grpo 28579 df-gid 28580 df-ginv 28581 df-gdiv 28582 df-ablo 28631 df-vc 28645 df-nv 28678 df-va 28681 df-ba 28682 df-sm 28683 df-0v 28684 df-vs 28685 df-nmcv 28686 df-ims 28687 df-dip 28787 df-ssp 28808 df-ph 28899 df-cbn 28949 df-hnorm 29054 df-hba 29055 df-hvsub 29057 df-hlim 29058 df-hcau 29059 df-sh 29293 df-ch 29307 df-oc 29338 df-ch0 29339 df-shs 29394 df-pjh 29481 df-h0op 29834 |
This theorem is referenced by: ho01i 29914 hh0oi 29989 nmop0h 30077 |
Copyright terms: Public domain | W3C validator |