![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df0op2 | Structured version Visualization version GIF version |
Description: Alternate definition of Hilbert space zero operator. (Contributed by NM, 7-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df0op2 | ⊢ 0hop = ( ℋ × 0ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ho0f 31271 | . . . . 5 ⊢ 0hop : ℋ⟶ ℋ | |
2 | ffn 6716 | . . . . 5 ⊢ ( 0hop : ℋ⟶ ℋ → 0hop Fn ℋ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 0hop Fn ℋ |
4 | ho0val 31270 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ( 0hop ‘𝑥) = 0ℎ) | |
5 | 4 | rgen 3061 | . . . 4 ⊢ ∀𝑥 ∈ ℋ ( 0hop ‘𝑥) = 0ℎ |
6 | fconstfv 7215 | . . . 4 ⊢ ( 0hop : ℋ⟶{0ℎ} ↔ ( 0hop Fn ℋ ∧ ∀𝑥 ∈ ℋ ( 0hop ‘𝑥) = 0ℎ)) | |
7 | 3, 5, 6 | mpbir2an 707 | . . 3 ⊢ 0hop : ℋ⟶{0ℎ} |
8 | ax-hv0cl 30523 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
9 | 8 | elexi 3492 | . . . 4 ⊢ 0ℎ ∈ V |
10 | 9 | fconst2 7207 | . . 3 ⊢ ( 0hop : ℋ⟶{0ℎ} ↔ 0hop = ( ℋ × {0ℎ})) |
11 | 7, 10 | mpbi 229 | . 2 ⊢ 0hop = ( ℋ × {0ℎ}) |
12 | df-ch0 30773 | . . 3 ⊢ 0ℋ = {0ℎ} | |
13 | 12 | xpeq2i 5702 | . 2 ⊢ ( ℋ × 0ℋ) = ( ℋ × {0ℎ}) |
14 | 11, 13 | eqtr4i 2761 | 1 ⊢ 0hop = ( ℋ × 0ℋ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∀wral 3059 {csn 4627 × cxp 5673 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 ℋchba 30439 0ℎc0v 30444 0ℋc0h 30455 0hop ch0o 30463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cc 10432 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 ax-hilex 30519 ax-hfvadd 30520 ax-hvcom 30521 ax-hvass 30522 ax-hv0cl 30523 ax-hvaddid 30524 ax-hfvmul 30525 ax-hvmulid 30526 ax-hvmulass 30527 ax-hvdistr1 30528 ax-hvdistr2 30529 ax-hvmul0 30530 ax-hfi 30599 ax-his1 30602 ax-his2 30603 ax-his3 30604 ax-his4 30605 ax-hcompl 30722 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-omul 8473 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-acn 9939 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-fbas 21141 df-fg 21142 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-cn 22951 df-cnp 22952 df-lm 22953 df-haus 23039 df-tx 23286 df-hmeo 23479 df-fil 23570 df-fm 23662 df-flim 23663 df-flf 23664 df-xms 24046 df-ms 24047 df-tms 24048 df-cfil 25003 df-cau 25004 df-cmet 25005 df-grpo 30013 df-gid 30014 df-ginv 30015 df-gdiv 30016 df-ablo 30065 df-vc 30079 df-nv 30112 df-va 30115 df-ba 30116 df-sm 30117 df-0v 30118 df-vs 30119 df-nmcv 30120 df-ims 30121 df-dip 30221 df-ssp 30242 df-ph 30333 df-cbn 30383 df-hnorm 30488 df-hba 30489 df-hvsub 30491 df-hlim 30492 df-hcau 30493 df-sh 30727 df-ch 30741 df-oc 30772 df-ch0 30773 df-shs 30828 df-pjh 30915 df-h0op 31268 |
This theorem is referenced by: ho01i 31348 hh0oi 31423 nmop0h 31511 |
Copyright terms: Public domain | W3C validator |