Detailed syntax breakdown of Definition df-hash
| Step | Hyp | Ref
| Expression |
| 1 | | chash 14346 |
. 2
class
♯ |
| 2 | | vx |
. . . . . . 7
setvar 𝑥 |
| 3 | | cvv 3459 |
. . . . . . 7
class
V |
| 4 | 2 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 5 | | c1 11128 |
. . . . . . . 8
class
1 |
| 6 | | caddc 11130 |
. . . . . . . 8
class
+ |
| 7 | 4, 5, 6 | co 7403 |
. . . . . . 7
class (𝑥 + 1) |
| 8 | 2, 3, 7 | cmpt 5201 |
. . . . . 6
class (𝑥 ∈ V ↦ (𝑥 + 1)) |
| 9 | | cc0 11127 |
. . . . . 6
class
0 |
| 10 | 8, 9 | crdg 8421 |
. . . . 5
class
rec((𝑥 ∈ V
↦ (𝑥 + 1)),
0) |
| 11 | | com 7859 |
. . . . 5
class
ω |
| 12 | 10, 11 | cres 5656 |
. . . 4
class
(rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) |
| 13 | | ccrd 9947 |
. . . 4
class
card |
| 14 | 12, 13 | ccom 5658 |
. . 3
class
((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) |
| 15 | | cfn 8957 |
. . . . 5
class
Fin |
| 16 | 3, 15 | cdif 3923 |
. . . 4
class (V
∖ Fin) |
| 17 | | cpnf 11264 |
. . . . 5
class
+∞ |
| 18 | 17 | csn 4601 |
. . . 4
class
{+∞} |
| 19 | 16, 18 | cxp 5652 |
. . 3
class ((V
∖ Fin) × {+∞}) |
| 20 | 14, 19 | cun 3924 |
. 2
class
(((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ∪ ((V ∖ Fin) ×
{+∞})) |
| 21 | 1, 20 | wceq 1540 |
1
wff ♯ =
(((rec((𝑥 ∈ V ↦
(𝑥 + 1)), 0) ↾
ω) ∘ card) ∪ ((V ∖ Fin) ×
{+∞})) |