MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgval Structured version   Visualization version   GIF version

Theorem hashgval 14382
Description: The value of the function in terms of the mapping 𝐺 from ω to 0. The proof avoids the use of ax-ac 10528. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypothesis
Ref Expression
hashgval.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
Assertion
Ref Expression
hashgval (𝐴 ∈ Fin → (𝐺‘(card‘𝐴)) = (♯‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hashgval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 resundir 6024 . . . . . 6 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ Fin) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) × {+∞}) ↾ Fin))
2 eqid 2740 . . . . . . . . . 10 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
3 eqid 2740 . . . . . . . . . 10 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
42, 3hashkf 14381 . . . . . . . . 9 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0
5 ffn 6747 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin)
6 fnresdm 6699 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ Fin) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card))
74, 5, 6mp2b 10 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ Fin) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
8 disjdifr 4496 . . . . . . . . 9 ((V ∖ Fin) ∩ Fin) = ∅
9 pnfex 11343 . . . . . . . . . . 11 +∞ ∈ V
109fconst 6807 . . . . . . . . . 10 ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}
11 ffn 6747 . . . . . . . . . 10 (((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} → ((V ∖ Fin) × {+∞}) Fn (V ∖ Fin))
12 fnresdisj 6700 . . . . . . . . . 10 (((V ∖ Fin) × {+∞}) Fn (V ∖ Fin) → (((V ∖ Fin) ∩ Fin) = ∅ ↔ (((V ∖ Fin) × {+∞}) ↾ Fin) = ∅))
1310, 11, 12mp2b 10 . . . . . . . . 9 (((V ∖ Fin) ∩ Fin) = ∅ ↔ (((V ∖ Fin) × {+∞}) ↾ Fin) = ∅)
148, 13mpbi 230 . . . . . . . 8 (((V ∖ Fin) × {+∞}) ↾ Fin) = ∅
157, 14uneq12i 4189 . . . . . . 7 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) × {+∞}) ↾ Fin)) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ∅)
16 un0 4417 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ∅) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
1715, 16eqtri 2768 . . . . . 6 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) × {+∞}) ↾ Fin)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
181, 17eqtri 2768 . . . . 5 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ Fin) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
19 df-hash 14380 . . . . . 6 ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
2019reseq1i 6005 . . . . 5 (♯ ↾ Fin) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ Fin)
21 hashgval.1 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
2221coeq1i 5884 . . . . 5 (𝐺 ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
2318, 20, 223eqtr4i 2778 . . . 4 (♯ ↾ Fin) = (𝐺 ∘ card)
2423fveq1i 6921 . . 3 ((♯ ↾ Fin)‘𝐴) = ((𝐺 ∘ card)‘𝐴)
25 cardf2 10012 . . . . 5 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
26 ffun 6750 . . . . 5 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On → Fun card)
2725, 26ax-mp 5 . . . 4 Fun card
28 finnum 10017 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
29 fvco 7020 . . . 4 ((Fun card ∧ 𝐴 ∈ dom card) → ((𝐺 ∘ card)‘𝐴) = (𝐺‘(card‘𝐴)))
3027, 28, 29sylancr 586 . . 3 (𝐴 ∈ Fin → ((𝐺 ∘ card)‘𝐴) = (𝐺‘(card‘𝐴)))
3124, 30eqtrid 2792 . 2 (𝐴 ∈ Fin → ((♯ ↾ Fin)‘𝐴) = (𝐺‘(card‘𝐴)))
32 fvres 6939 . 2 (𝐴 ∈ Fin → ((♯ ↾ Fin)‘𝐴) = (♯‘𝐴))
3331, 32eqtr3d 2782 1 (𝐴 ∈ Fin → (𝐺‘(card‘𝐴)) = (♯‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488  cdif 3973  cun 3974  cin 3975  c0 4352  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  cres 5702  ccom 5704  Oncon0 6395  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  reccrdg 8465  cen 9000  Fincfn 9003  cardccrd 10004  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  0cn0 12553  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-hash 14380
This theorem is referenced by:  hashginv  14383  hashfz1  14395  hashen  14396  hashcard  14404  hashcl  14405  hashgval2  14427  hashdom  14428  hashun  14431  fz1isolem  14510
  Copyright terms: Public domain W3C validator