| Step | Hyp | Ref
| Expression |
| 1 | | resundir 5981 |
. . . . . 6
⊢
((((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
↾ Fin) = ((((rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) ×
{+∞}) ↾ Fin)) |
| 2 | | eqid 2735 |
. . . . . . . . . 10
⊢
(rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) = (rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) |
| 3 | | eqid 2735 |
. . . . . . . . . 10
⊢
((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘
card) |
| 4 | 2, 3 | hashkf 14350 |
. . . . . . . . 9
⊢
((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card):Fin⟶ℕ0 |
| 5 | | ffn 6706 |
. . . . . . . . 9
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card):Fin⟶ℕ0 →
((rec((𝑥 ∈ V ↦
(𝑥 + 1)), 0) ↾
ω) ∘ card) Fn Fin) |
| 6 | | fnresdm 6657 |
. . . . . . . . 9
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) Fn Fin → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
↾ Fin) = ((rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) ∘ card)) |
| 7 | 4, 5, 6 | mp2b 10 |
. . . . . . . 8
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ↾ Fin) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘
card) |
| 8 | | disjdifr 4448 |
. . . . . . . . 9
⊢ ((V
∖ Fin) ∩ Fin) = ∅ |
| 9 | | pnfex 11288 |
. . . . . . . . . . 11
⊢ +∞
∈ V |
| 10 | 9 | fconst 6764 |
. . . . . . . . . 10
⊢ ((V
∖ Fin) × {+∞}):(V ∖
Fin)⟶{+∞} |
| 11 | | ffn 6706 |
. . . . . . . . . 10
⊢ (((V
∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} → ((V
∖ Fin) × {+∞}) Fn (V ∖ Fin)) |
| 12 | | fnresdisj 6658 |
. . . . . . . . . 10
⊢ (((V
∖ Fin) × {+∞}) Fn (V ∖ Fin) → (((V ∖ Fin)
∩ Fin) = ∅ ↔ (((V ∖ Fin) × {+∞}) ↾ Fin)
= ∅)) |
| 13 | 10, 11, 12 | mp2b 10 |
. . . . . . . . 9
⊢ (((V
∖ Fin) ∩ Fin) = ∅ ↔ (((V ∖ Fin) × {+∞})
↾ Fin) = ∅) |
| 14 | 8, 13 | mpbi 230 |
. . . . . . . 8
⊢ (((V
∖ Fin) × {+∞}) ↾ Fin) = ∅ |
| 15 | 7, 14 | uneq12i 4141 |
. . . . . . 7
⊢
((((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) ×
{+∞}) ↾ Fin)) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
∪ ∅) |
| 16 | | un0 4369 |
. . . . . . 7
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ∪ ∅) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘
card) |
| 17 | 15, 16 | eqtri 2758 |
. . . . . 6
⊢
((((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) ×
{+∞}) ↾ Fin)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘
card) |
| 18 | 1, 17 | eqtri 2758 |
. . . . 5
⊢
((((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
↾ Fin) = ((rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) ∘ card) |
| 19 | | df-hash 14349 |
. . . . . 6
⊢ ♯ =
(((rec((𝑥 ∈ V ↦
(𝑥 + 1)), 0) ↾
ω) ∘ card) ∪ ((V ∖ Fin) ×
{+∞})) |
| 20 | 19 | reseq1i 5962 |
. . . . 5
⊢ (♯
↾ Fin) = ((((rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
↾ Fin) |
| 21 | | hashgval.1 |
. . . . . 6
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) |
| 22 | 21 | coeq1i 5839 |
. . . . 5
⊢ (𝐺 ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
∘ card) |
| 23 | 18, 20, 22 | 3eqtr4i 2768 |
. . . 4
⊢ (♯
↾ Fin) = (𝐺 ∘
card) |
| 24 | 23 | fveq1i 6877 |
. . 3
⊢ ((♯
↾ Fin)‘𝐴) =
((𝐺 ∘
card)‘𝐴) |
| 25 | | cardf2 9957 |
. . . . 5
⊢
card:{𝑥 ∣
∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On |
| 26 | | ffun 6709 |
. . . . 5
⊢
(card:{𝑥 ∣
∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On → Fun card) |
| 27 | 25, 26 | ax-mp 5 |
. . . 4
⊢ Fun
card |
| 28 | | finnum 9962 |
. . . 4
⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom
card) |
| 29 | | fvco 6977 |
. . . 4
⊢ ((Fun
card ∧ 𝐴 ∈ dom
card) → ((𝐺 ∘
card)‘𝐴) = (𝐺‘(card‘𝐴))) |
| 30 | 27, 28, 29 | sylancr 587 |
. . 3
⊢ (𝐴 ∈ Fin → ((𝐺 ∘ card)‘𝐴) = (𝐺‘(card‘𝐴))) |
| 31 | 24, 30 | eqtrid 2782 |
. 2
⊢ (𝐴 ∈ Fin → ((♯
↾ Fin)‘𝐴) =
(𝐺‘(card‘𝐴))) |
| 32 | | fvres 6895 |
. 2
⊢ (𝐴 ∈ Fin → ((♯
↾ Fin)‘𝐴) =
(♯‘𝐴)) |
| 33 | 31, 32 | eqtr3d 2772 |
1
⊢ (𝐴 ∈ Fin → (𝐺‘(card‘𝐴)) = (♯‘𝐴)) |