Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashfxnn0 | Structured version Visualization version GIF version |
Description: The size function is a function into the extended nonnegative integers. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
hashfxnn0 | ⊢ ♯:V⟶ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
2 | eqid 2735 | . . . . 5 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) | |
3 | 1, 2 | hashkf 14106 | . . . 4 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 |
4 | pnfex 11088 | . . . . 5 ⊢ +∞ ∈ V | |
5 | 4 | fconst 6690 | . . . 4 ⊢ ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} |
6 | 3, 5 | pm3.2i 471 | . . 3 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 ∧ ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}) |
7 | disjdif 4410 | . . 3 ⊢ (Fin ∩ (V ∖ Fin)) = ∅ | |
8 | fun 6666 | . . 3 ⊢ (((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 ∧ ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}) ∧ (Fin ∩ (V ∖ Fin)) = ∅) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞})) | |
9 | 6, 7, 8 | mp2an 689 | . 2 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞}) |
10 | df-hash 14105 | . . . 4 ⊢ ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) | |
11 | eqid 2735 | . . . 4 ⊢ V = V | |
12 | df-xnn0 12366 | . . . 4 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
13 | feq123 6620 | . . . 4 ⊢ ((♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ∧ V = V ∧ ℕ0* = (ℕ0 ∪ {+∞})) → (♯:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞}))) | |
14 | 10, 11, 12, 13 | mp3an 1460 | . . 3 ⊢ (♯:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞})) |
15 | unvdif 4413 | . . . 4 ⊢ (Fin ∪ (V ∖ Fin)) = V | |
16 | 15 | feq2i 6622 | . . 3 ⊢ ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞}) ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞})) |
17 | 14, 16 | bitr4i 277 | . 2 ⊢ (♯:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞})) |
18 | 9, 17 | mpbir 230 | 1 ⊢ ♯:V⟶ℕ0* |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1538 Vcvv 3436 ∖ cdif 3888 ∪ cun 3889 ∩ cin 3890 ∅c0 4261 {csn 4564 ↦ cmpt 5163 × cxp 5598 ↾ cres 5602 ∘ ccom 5604 ⟶wf 6454 (class class class)co 7308 ωcom 7748 reccrdg 8275 Fincfn 8769 cardccrd 9751 0cc0 10931 1c1 10932 + caddc 10934 +∞cpnf 11066 ℕ0cn0 12293 ℕ0*cxnn0 12365 ♯chash 14104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7621 ax-cnex 10987 ax-resscn 10988 ax-1cn 10989 ax-icn 10990 ax-addcl 10991 ax-addrcl 10992 ax-mulcl 10993 ax-mulrcl 10994 ax-mulcom 10995 ax-addass 10996 ax-mulass 10997 ax-distr 10998 ax-i2m1 10999 ax-1ne0 11000 ax-1rid 11001 ax-rnegex 11002 ax-rrecex 11003 ax-cnre 11004 ax-pre-lttri 11005 ax-pre-lttrn 11006 ax-pre-ltadd 11007 ax-pre-mulgt0 11008 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3340 df-rab 3357 df-v 3438 df-sbc 3721 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-int 4886 df-iun 4932 df-br 5081 df-opab 5143 df-mpt 5164 df-tr 5198 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7265 df-ov 7311 df-oprab 7312 df-mpo 7313 df-om 7749 df-2nd 7868 df-frecs 8132 df-wrecs 8163 df-recs 8237 df-rdg 8276 df-1o 8332 df-er 8534 df-en 8770 df-dom 8771 df-sdom 8772 df-fin 8773 df-card 9755 df-pnf 11071 df-mnf 11072 df-xr 11073 df-ltxr 11074 df-le 11075 df-sub 11267 df-neg 11268 df-nn 12034 df-n0 12294 df-xnn0 12366 df-z 12380 df-uz 12643 df-hash 14105 |
This theorem is referenced by: hashf 14112 hashxnn0 14113 |
Copyright terms: Public domain | W3C validator |