MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfxnn0 Structured version   Visualization version   GIF version

Theorem hashfxnn0 14328
Description: The size function is a function into the extended nonnegative integers. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by AV, 10-Dec-2020.)
Assertion
Ref Expression
hashfxnn0 ♯:V⟶ℕ0*

Proof of Theorem hashfxnn0
StepHypRef Expression
1 eqid 2725 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
2 eqid 2725 . . . . 5 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
31, 2hashkf 14323 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0
4 pnfex 11297 . . . . 5 +∞ ∈ V
54fconst 6778 . . . 4 ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}
63, 5pm3.2i 469 . . 3 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 ∧ ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞})
7 disjdif 4467 . . 3 (Fin ∩ (V ∖ Fin)) = ∅
8 fun 6754 . . 3 (((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 ∧ ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}) ∧ (Fin ∩ (V ∖ Fin)) = ∅) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞}))
96, 7, 8mp2an 690 . 2 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞})
10 df-hash 14322 . . . 4 ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
11 eqid 2725 . . . 4 V = V
12 df-xnn0 12575 . . . 4 0* = (ℕ0 ∪ {+∞})
13 feq123 6707 . . . 4 ((♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ∧ V = V ∧ ℕ0* = (ℕ0 ∪ {+∞})) → (♯:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞})))
1410, 11, 12, 13mp3an 1457 . . 3 (♯:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞}))
15 unvdif 4470 . . . 4 (Fin ∪ (V ∖ Fin)) = V
1615feq2i 6709 . . 3 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞}) ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞}))
1714, 16bitr4i 277 . 2 (♯:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞}))
189, 17mpbir 230 1 ♯:V⟶ℕ0*
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  Vcvv 3463  cdif 3936  cun 3937  cin 3938  c0 4318  {csn 4624  cmpt 5226   × cxp 5670  cres 5674  ccom 5676  wf 6539  (class class class)co 7416  ωcom 7868  reccrdg 8428  Fincfn 8962  cardccrd 9958  0cc0 11138  1c1 11139   + caddc 11141  +∞cpnf 11275  0cn0 12502  0*cxnn0 12574  chash 14321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-hash 14322
This theorem is referenced by:  hashf  14329  hashxnn0  14330
  Copyright terms: Public domain W3C validator