MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfxnn0 Structured version   Visualization version   GIF version

Theorem hashfxnn0 14360
Description: The size function is a function into the extended nonnegative integers. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by AV, 10-Dec-2020.)
Assertion
Ref Expression
hashfxnn0 ♯:V⟶ℕ0*

Proof of Theorem hashfxnn0
StepHypRef Expression
1 eqid 2736 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
2 eqid 2736 . . . . 5 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
31, 2hashkf 14355 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0
4 pnfex 11293 . . . . 5 +∞ ∈ V
54fconst 6769 . . . 4 ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}
63, 5pm3.2i 470 . . 3 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 ∧ ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞})
7 disjdif 4452 . . 3 (Fin ∩ (V ∖ Fin)) = ∅
8 fun 6745 . . 3 (((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 ∧ ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}) ∧ (Fin ∩ (V ∖ Fin)) = ∅) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞}))
96, 7, 8mp2an 692 . 2 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞})
10 df-hash 14354 . . . 4 ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
11 eqid 2736 . . . 4 V = V
12 df-xnn0 12580 . . . 4 0* = (ℕ0 ∪ {+∞})
13 feq123 6701 . . . 4 ((♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ∧ V = V ∧ ℕ0* = (ℕ0 ∪ {+∞})) → (♯:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞})))
1410, 11, 12, 13mp3an 1463 . . 3 (♯:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞}))
15 unvdif 4455 . . . 4 (Fin ∪ (V ∖ Fin)) = V
1615feq2i 6703 . . 3 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞}) ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞}))
1714, 16bitr4i 278 . 2 (♯:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞}))
189, 17mpbir 231 1 ♯:V⟶ℕ0*
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  Vcvv 3464  cdif 3928  cun 3929  cin 3930  c0 4313  {csn 4606  cmpt 5206   × cxp 5657  cres 5661  ccom 5663  wf 6532  (class class class)co 7410  ωcom 7866  reccrdg 8428  Fincfn 8964  cardccrd 9954  0cc0 11134  1c1 11135   + caddc 11137  +∞cpnf 11271  0cn0 12506  0*cxnn0 12579  chash 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-hash 14354
This theorem is referenced by:  hashf  14361  hashxnn0  14362
  Copyright terms: Public domain W3C validator