![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-hash | Structured version Visualization version GIF version |
Description: Example for df-hash 14291. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-hash | ⊢ (♯‘{0, 1, 2}) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4634 | . . . 4 ⊢ {0, 1, 2} = ({0, 1} ∪ {2}) | |
2 | 1 | fveq2i 6895 | . . 3 ⊢ (♯‘{0, 1, 2}) = (♯‘({0, 1} ∪ {2})) |
3 | prfi 9322 | . . . 4 ⊢ {0, 1} ∈ Fin | |
4 | snfi 9044 | . . . 4 ⊢ {2} ∈ Fin | |
5 | 2ne0 12316 | . . . . . 6 ⊢ 2 ≠ 0 | |
6 | 1ne2 12420 | . . . . . . 7 ⊢ 1 ≠ 2 | |
7 | 6 | necomi 2996 | . . . . . 6 ⊢ 2 ≠ 1 |
8 | 5, 7 | nelpri 4658 | . . . . 5 ⊢ ¬ 2 ∈ {0, 1} |
9 | disjsn 4716 | . . . . 5 ⊢ (({0, 1} ∩ {2}) = ∅ ↔ ¬ 2 ∈ {0, 1}) | |
10 | 8, 9 | mpbir 230 | . . . 4 ⊢ ({0, 1} ∩ {2}) = ∅ |
11 | hashun 14342 | . . . 4 ⊢ (({0, 1} ∈ Fin ∧ {2} ∈ Fin ∧ ({0, 1} ∩ {2}) = ∅) → (♯‘({0, 1} ∪ {2})) = ((♯‘{0, 1}) + (♯‘{2}))) | |
12 | 3, 4, 10, 11 | mp3an 1462 | . . 3 ⊢ (♯‘({0, 1} ∪ {2})) = ((♯‘{0, 1}) + (♯‘{2})) |
13 | 2, 12 | eqtri 2761 | . 2 ⊢ (♯‘{0, 1, 2}) = ((♯‘{0, 1}) + (♯‘{2})) |
14 | prhash2ex 14359 | . . . 4 ⊢ (♯‘{0, 1}) = 2 | |
15 | 2z 12594 | . . . . 5 ⊢ 2 ∈ ℤ | |
16 | hashsng 14329 | . . . . 5 ⊢ (2 ∈ ℤ → (♯‘{2}) = 1) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ (♯‘{2}) = 1 |
18 | 14, 17 | oveq12i 7421 | . . 3 ⊢ ((♯‘{0, 1}) + (♯‘{2})) = (2 + 1) |
19 | 2p1e3 12354 | . . 3 ⊢ (2 + 1) = 3 | |
20 | 18, 19 | eqtri 2761 | . 2 ⊢ ((♯‘{0, 1}) + (♯‘{2})) = 3 |
21 | 13, 20 | eqtri 2761 | 1 ⊢ (♯‘{0, 1, 2}) = 3 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 ∪ cun 3947 ∩ cin 3948 ∅c0 4323 {csn 4629 {cpr 4631 {ctp 4633 ‘cfv 6544 (class class class)co 7409 Fincfn 8939 0cc0 11110 1c1 11111 + caddc 11113 2c2 12267 3c3 12268 ℤcz 12558 ♯chash 14290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |