Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-hash | Structured version Visualization version GIF version |
Description: Example for df-hash 13930. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-hash | ⊢ (♯‘{0, 1, 2}) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4563 | . . . 4 ⊢ {0, 1, 2} = ({0, 1} ∪ {2}) | |
2 | 1 | fveq2i 6742 | . . 3 ⊢ (♯‘{0, 1, 2}) = (♯‘({0, 1} ∪ {2})) |
3 | prfi 8976 | . . . 4 ⊢ {0, 1} ∈ Fin | |
4 | snfi 8747 | . . . 4 ⊢ {2} ∈ Fin | |
5 | 2ne0 11964 | . . . . . 6 ⊢ 2 ≠ 0 | |
6 | 1ne2 12068 | . . . . . . 7 ⊢ 1 ≠ 2 | |
7 | 6 | necomi 2998 | . . . . . 6 ⊢ 2 ≠ 1 |
8 | 5, 7 | nelpri 4587 | . . . . 5 ⊢ ¬ 2 ∈ {0, 1} |
9 | disjsn 4644 | . . . . 5 ⊢ (({0, 1} ∩ {2}) = ∅ ↔ ¬ 2 ∈ {0, 1}) | |
10 | 8, 9 | mpbir 234 | . . . 4 ⊢ ({0, 1} ∩ {2}) = ∅ |
11 | hashun 13982 | . . . 4 ⊢ (({0, 1} ∈ Fin ∧ {2} ∈ Fin ∧ ({0, 1} ∩ {2}) = ∅) → (♯‘({0, 1} ∪ {2})) = ((♯‘{0, 1}) + (♯‘{2}))) | |
12 | 3, 4, 10, 11 | mp3an 1463 | . . 3 ⊢ (♯‘({0, 1} ∪ {2})) = ((♯‘{0, 1}) + (♯‘{2})) |
13 | 2, 12 | eqtri 2767 | . 2 ⊢ (♯‘{0, 1, 2}) = ((♯‘{0, 1}) + (♯‘{2})) |
14 | prhash2ex 13999 | . . . 4 ⊢ (♯‘{0, 1}) = 2 | |
15 | 2z 12239 | . . . . 5 ⊢ 2 ∈ ℤ | |
16 | hashsng 13969 | . . . . 5 ⊢ (2 ∈ ℤ → (♯‘{2}) = 1) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ (♯‘{2}) = 1 |
18 | 14, 17 | oveq12i 7247 | . . 3 ⊢ ((♯‘{0, 1}) + (♯‘{2})) = (2 + 1) |
19 | 2p1e3 12002 | . . 3 ⊢ (2 + 1) = 3 | |
20 | 18, 19 | eqtri 2767 | . 2 ⊢ ((♯‘{0, 1}) + (♯‘{2})) = 3 |
21 | 13, 20 | eqtri 2767 | 1 ⊢ (♯‘{0, 1, 2}) = 3 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1543 ∈ wcel 2112 ∪ cun 3881 ∩ cin 3882 ∅c0 4254 {csn 4558 {cpr 4560 {ctp 4562 ‘cfv 6401 (class class class)co 7235 Fincfn 8650 0cc0 10759 1c1 10760 + caddc 10762 2c2 11915 3c3 11916 ℤcz 12206 ♯chash 13929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-1st 7783 df-2nd 7784 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-oadd 8230 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-dju 9547 df-card 9585 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-nn 11861 df-2 11923 df-3 11924 df-n0 12121 df-z 12207 df-uz 12469 df-fz 13126 df-hash 13930 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |