Step | Hyp | Ref
| Expression |
1 | | frfnom 8266 |
. . . . . . 7
⊢
(rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) Fn ω |
2 | | hashgval.1 |
. . . . . . . 8
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) |
3 | 2 | fneq1i 6530 |
. . . . . . 7
⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn
ω) |
4 | 1, 3 | mpbir 230 |
. . . . . 6
⊢ 𝐺 Fn ω |
5 | | fnfun 6533 |
. . . . . 6
⊢ (𝐺 Fn ω → Fun 𝐺) |
6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢ Fun 𝐺 |
7 | | cardf2 9701 |
. . . . . 6
⊢
card:{𝑦 ∣
∃𝑥 ∈ On 𝑥 ≈ 𝑦}⟶On |
8 | | ffun 6603 |
. . . . . 6
⊢
(card:{𝑦 ∣
∃𝑥 ∈ On 𝑥 ≈ 𝑦}⟶On → Fun card) |
9 | 7, 8 | ax-mp 5 |
. . . . 5
⊢ Fun
card |
10 | | funco 6474 |
. . . . 5
⊢ ((Fun
𝐺 ∧ Fun card) →
Fun (𝐺 ∘
card)) |
11 | 6, 9, 10 | mp2an 689 |
. . . 4
⊢ Fun
(𝐺 ∘
card) |
12 | | dmco 6158 |
. . . . 5
⊢ dom
(𝐺 ∘ card) = (◡card “ dom 𝐺) |
13 | 4 | fndmi 6537 |
. . . . . 6
⊢ dom 𝐺 = ω |
14 | 13 | imaeq2i 5967 |
. . . . 5
⊢ (◡card “ dom 𝐺) = (◡card “ ω) |
15 | | funfn 6464 |
. . . . . . . . 9
⊢ (Fun card
↔ card Fn dom card) |
16 | 9, 15 | mpbi 229 |
. . . . . . . 8
⊢ card Fn
dom card |
17 | | elpreima 6935 |
. . . . . . . 8
⊢ (card Fn
dom card → (𝑦 ∈
(◡card “ ω) ↔ (𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω))) |
18 | 16, 17 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦 ∈ (◡card “ ω) ↔ (𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω)) |
19 | | id 22 |
. . . . . . . . . 10
⊢
((card‘𝑦)
∈ ω → (card‘𝑦) ∈ ω) |
20 | | cardid2 9711 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ dom card →
(card‘𝑦) ≈
𝑦) |
21 | 20 | ensymd 8791 |
. . . . . . . . . 10
⊢ (𝑦 ∈ dom card → 𝑦 ≈ (card‘𝑦)) |
22 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑥 = (card‘𝑦) → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ (card‘𝑦))) |
23 | 22 | rspcev 3561 |
. . . . . . . . . 10
⊢
(((card‘𝑦)
∈ ω ∧ 𝑦
≈ (card‘𝑦))
→ ∃𝑥 ∈
ω 𝑦 ≈ 𝑥) |
24 | 19, 21, 23 | syl2anr 597 |
. . . . . . . . 9
⊢ ((𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω) → ∃𝑥
∈ ω 𝑦 ≈
𝑥) |
25 | | isfi 8764 |
. . . . . . . . 9
⊢ (𝑦 ∈ Fin ↔ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥) |
26 | 24, 25 | sylibr 233 |
. . . . . . . 8
⊢ ((𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω) → 𝑦 ∈
Fin) |
27 | | finnum 9706 |
. . . . . . . . 9
⊢ (𝑦 ∈ Fin → 𝑦 ∈ dom
card) |
28 | | ficardom 9719 |
. . . . . . . . 9
⊢ (𝑦 ∈ Fin →
(card‘𝑦) ∈
ω) |
29 | 27, 28 | jca 512 |
. . . . . . . 8
⊢ (𝑦 ∈ Fin → (𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω)) |
30 | 26, 29 | impbii 208 |
. . . . . . 7
⊢ ((𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω) ↔ 𝑦 ∈
Fin) |
31 | 18, 30 | bitri 274 |
. . . . . 6
⊢ (𝑦 ∈ (◡card “ ω) ↔ 𝑦 ∈ Fin) |
32 | 31 | eqriv 2735 |
. . . . 5
⊢ (◡card “ ω) = Fin |
33 | 12, 14, 32 | 3eqtri 2770 |
. . . 4
⊢ dom
(𝐺 ∘ card) =
Fin |
34 | | df-fn 6436 |
. . . 4
⊢ ((𝐺 ∘ card) Fn Fin ↔
(Fun (𝐺 ∘ card) ∧
dom (𝐺 ∘ card) =
Fin)) |
35 | 11, 33, 34 | mpbir2an 708 |
. . 3
⊢ (𝐺 ∘ card) Fn
Fin |
36 | | hashkf.2 |
. . . 4
⊢ 𝐾 = (𝐺 ∘ card) |
37 | 36 | fneq1i 6530 |
. . 3
⊢ (𝐾 Fn Fin ↔ (𝐺 ∘ card) Fn
Fin) |
38 | 35, 37 | mpbir 230 |
. 2
⊢ 𝐾 Fn Fin |
39 | 36 | fveq1i 6775 |
. . . . 5
⊢ (𝐾‘𝑦) = ((𝐺 ∘ card)‘𝑦) |
40 | | fvco 6866 |
. . . . . 6
⊢ ((Fun
card ∧ 𝑦 ∈ dom
card) → ((𝐺 ∘
card)‘𝑦) = (𝐺‘(card‘𝑦))) |
41 | 9, 27, 40 | sylancr 587 |
. . . . 5
⊢ (𝑦 ∈ Fin → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦))) |
42 | 39, 41 | eqtrid 2790 |
. . . 4
⊢ (𝑦 ∈ Fin → (𝐾‘𝑦) = (𝐺‘(card‘𝑦))) |
43 | 2 | hashgf1o 13691 |
. . . . . . 7
⊢ 𝐺:ω–1-1-onto→ℕ0 |
44 | | f1of 6716 |
. . . . . . 7
⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) |
45 | 43, 44 | ax-mp 5 |
. . . . . 6
⊢ 𝐺:ω⟶ℕ0 |
46 | 45 | ffvelrni 6960 |
. . . . 5
⊢
((card‘𝑦)
∈ ω → (𝐺‘(card‘𝑦)) ∈
ℕ0) |
47 | 28, 46 | syl 17 |
. . . 4
⊢ (𝑦 ∈ Fin → (𝐺‘(card‘𝑦)) ∈
ℕ0) |
48 | 42, 47 | eqeltrd 2839 |
. . 3
⊢ (𝑦 ∈ Fin → (𝐾‘𝑦) ∈
ℕ0) |
49 | 48 | rgen 3074 |
. 2
⊢
∀𝑦 ∈ Fin
(𝐾‘𝑦) ∈ ℕ0 |
50 | | ffnfv 6992 |
. 2
⊢ (𝐾:Fin⟶ℕ0
↔ (𝐾 Fn Fin ∧
∀𝑦 ∈ Fin (𝐾‘𝑦) ∈
ℕ0)) |
51 | 38, 49, 50 | mpbir2an 708 |
1
⊢ 𝐾:Fin⟶ℕ0 |