MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashkf Structured version   Visualization version   GIF version

Theorem hashkf 14046
Description: The finite part of the size function maps all finite sets to their cardinality, as members of 0. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
hashgval.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
hashkf.2 𝐾 = (𝐺 ∘ card)
Assertion
Ref Expression
hashkf 𝐾:Fin⟶ℕ0

Proof of Theorem hashkf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frfnom 8266 . . . . . . 7 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω
2 hashgval.1 . . . . . . . 8 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
32fneq1i 6530 . . . . . . 7 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω)
41, 3mpbir 230 . . . . . 6 𝐺 Fn ω
5 fnfun 6533 . . . . . 6 (𝐺 Fn ω → Fun 𝐺)
64, 5ax-mp 5 . . . . 5 Fun 𝐺
7 cardf2 9701 . . . . . 6 card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On
8 ffun 6603 . . . . . 6 (card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On → Fun card)
97, 8ax-mp 5 . . . . 5 Fun card
10 funco 6474 . . . . 5 ((Fun 𝐺 ∧ Fun card) → Fun (𝐺 ∘ card))
116, 9, 10mp2an 689 . . . 4 Fun (𝐺 ∘ card)
12 dmco 6158 . . . . 5 dom (𝐺 ∘ card) = (card “ dom 𝐺)
134fndmi 6537 . . . . . 6 dom 𝐺 = ω
1413imaeq2i 5967 . . . . 5 (card “ dom 𝐺) = (card “ ω)
15 funfn 6464 . . . . . . . . 9 (Fun card ↔ card Fn dom card)
169, 15mpbi 229 . . . . . . . 8 card Fn dom card
17 elpreima 6935 . . . . . . . 8 (card Fn dom card → (𝑦 ∈ (card “ ω) ↔ (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω)))
1816, 17ax-mp 5 . . . . . . 7 (𝑦 ∈ (card “ ω) ↔ (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω))
19 id 22 . . . . . . . . . 10 ((card‘𝑦) ∈ ω → (card‘𝑦) ∈ ω)
20 cardid2 9711 . . . . . . . . . . 11 (𝑦 ∈ dom card → (card‘𝑦) ≈ 𝑦)
2120ensymd 8791 . . . . . . . . . 10 (𝑦 ∈ dom card → 𝑦 ≈ (card‘𝑦))
22 breq2 5078 . . . . . . . . . . 11 (𝑥 = (card‘𝑦) → (𝑦𝑥𝑦 ≈ (card‘𝑦)))
2322rspcev 3561 . . . . . . . . . 10 (((card‘𝑦) ∈ ω ∧ 𝑦 ≈ (card‘𝑦)) → ∃𝑥 ∈ ω 𝑦𝑥)
2419, 21, 23syl2anr 597 . . . . . . . . 9 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) → ∃𝑥 ∈ ω 𝑦𝑥)
25 isfi 8764 . . . . . . . . 9 (𝑦 ∈ Fin ↔ ∃𝑥 ∈ ω 𝑦𝑥)
2624, 25sylibr 233 . . . . . . . 8 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ Fin)
27 finnum 9706 . . . . . . . . 9 (𝑦 ∈ Fin → 𝑦 ∈ dom card)
28 ficardom 9719 . . . . . . . . 9 (𝑦 ∈ Fin → (card‘𝑦) ∈ ω)
2927, 28jca 512 . . . . . . . 8 (𝑦 ∈ Fin → (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω))
3026, 29impbii 208 . . . . . . 7 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) ↔ 𝑦 ∈ Fin)
3118, 30bitri 274 . . . . . 6 (𝑦 ∈ (card “ ω) ↔ 𝑦 ∈ Fin)
3231eqriv 2735 . . . . 5 (card “ ω) = Fin
3312, 14, 323eqtri 2770 . . . 4 dom (𝐺 ∘ card) = Fin
34 df-fn 6436 . . . 4 ((𝐺 ∘ card) Fn Fin ↔ (Fun (𝐺 ∘ card) ∧ dom (𝐺 ∘ card) = Fin))
3511, 33, 34mpbir2an 708 . . 3 (𝐺 ∘ card) Fn Fin
36 hashkf.2 . . . 4 𝐾 = (𝐺 ∘ card)
3736fneq1i 6530 . . 3 (𝐾 Fn Fin ↔ (𝐺 ∘ card) Fn Fin)
3835, 37mpbir 230 . 2 𝐾 Fn Fin
3936fveq1i 6775 . . . . 5 (𝐾𝑦) = ((𝐺 ∘ card)‘𝑦)
40 fvco 6866 . . . . . 6 ((Fun card ∧ 𝑦 ∈ dom card) → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦)))
419, 27, 40sylancr 587 . . . . 5 (𝑦 ∈ Fin → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦)))
4239, 41eqtrid 2790 . . . 4 (𝑦 ∈ Fin → (𝐾𝑦) = (𝐺‘(card‘𝑦)))
432hashgf1o 13691 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
44 f1of 6716 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
4543, 44ax-mp 5 . . . . . 6 𝐺:ω⟶ℕ0
4645ffvelrni 6960 . . . . 5 ((card‘𝑦) ∈ ω → (𝐺‘(card‘𝑦)) ∈ ℕ0)
4728, 46syl 17 . . . 4 (𝑦 ∈ Fin → (𝐺‘(card‘𝑦)) ∈ ℕ0)
4842, 47eqeltrd 2839 . . 3 (𝑦 ∈ Fin → (𝐾𝑦) ∈ ℕ0)
4948rgen 3074 . 2 𝑦 ∈ Fin (𝐾𝑦) ∈ ℕ0
50 ffnfv 6992 . 2 (𝐾:Fin⟶ℕ0 ↔ (𝐾 Fn Fin ∧ ∀𝑦 ∈ Fin (𝐾𝑦) ∈ ℕ0))
5138, 49, 50mpbir2an 708 1 𝐾:Fin⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  Vcvv 3432   class class class wbr 5074  cmpt 5157  ccnv 5588  dom cdm 5589  cres 5591  cima 5592  ccom 5593  Oncon0 6266  Fun wfun 6427   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  ωcom 7712  reccrdg 8240  cen 8730  Fincfn 8733  cardccrd 9693  0cc0 10871  1c1 10872   + caddc 10874  0cn0 12233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583
This theorem is referenced by:  hashgval  14047  hashinf  14049  hashfxnn0  14051
  Copyright terms: Public domain W3C validator