MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashkf Structured version   Visualization version   GIF version

Theorem hashkf 14304
Description: The finite part of the size function maps all finite sets to their cardinality, as members of 0. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
hashgval.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
hashkf.2 𝐾 = (𝐺 ∘ card)
Assertion
Ref Expression
hashkf 𝐾:Fin⟶ℕ0

Proof of Theorem hashkf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frfnom 8406 . . . . . . 7 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω
2 hashgval.1 . . . . . . . 8 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
32fneq1i 6618 . . . . . . 7 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω)
41, 3mpbir 231 . . . . . 6 𝐺 Fn ω
5 fnfun 6621 . . . . . 6 (𝐺 Fn ω → Fun 𝐺)
64, 5ax-mp 5 . . . . 5 Fun 𝐺
7 cardf2 9903 . . . . . 6 card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On
8 ffun 6694 . . . . . 6 (card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On → Fun card)
97, 8ax-mp 5 . . . . 5 Fun card
10 funco 6559 . . . . 5 ((Fun 𝐺 ∧ Fun card) → Fun (𝐺 ∘ card))
116, 9, 10mp2an 692 . . . 4 Fun (𝐺 ∘ card)
12 dmco 6230 . . . . 5 dom (𝐺 ∘ card) = (card “ dom 𝐺)
134fndmi 6625 . . . . . 6 dom 𝐺 = ω
1413imaeq2i 6032 . . . . 5 (card “ dom 𝐺) = (card “ ω)
15 funfn 6549 . . . . . . . . 9 (Fun card ↔ card Fn dom card)
169, 15mpbi 230 . . . . . . . 8 card Fn dom card
17 elpreima 7033 . . . . . . . 8 (card Fn dom card → (𝑦 ∈ (card “ ω) ↔ (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω)))
1816, 17ax-mp 5 . . . . . . 7 (𝑦 ∈ (card “ ω) ↔ (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω))
19 id 22 . . . . . . . . . 10 ((card‘𝑦) ∈ ω → (card‘𝑦) ∈ ω)
20 cardid2 9913 . . . . . . . . . . 11 (𝑦 ∈ dom card → (card‘𝑦) ≈ 𝑦)
2120ensymd 8979 . . . . . . . . . 10 (𝑦 ∈ dom card → 𝑦 ≈ (card‘𝑦))
22 breq2 5114 . . . . . . . . . . 11 (𝑥 = (card‘𝑦) → (𝑦𝑥𝑦 ≈ (card‘𝑦)))
2322rspcev 3591 . . . . . . . . . 10 (((card‘𝑦) ∈ ω ∧ 𝑦 ≈ (card‘𝑦)) → ∃𝑥 ∈ ω 𝑦𝑥)
2419, 21, 23syl2anr 597 . . . . . . . . 9 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) → ∃𝑥 ∈ ω 𝑦𝑥)
25 isfi 8950 . . . . . . . . 9 (𝑦 ∈ Fin ↔ ∃𝑥 ∈ ω 𝑦𝑥)
2624, 25sylibr 234 . . . . . . . 8 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ Fin)
27 finnum 9908 . . . . . . . . 9 (𝑦 ∈ Fin → 𝑦 ∈ dom card)
28 ficardom 9921 . . . . . . . . 9 (𝑦 ∈ Fin → (card‘𝑦) ∈ ω)
2927, 28jca 511 . . . . . . . 8 (𝑦 ∈ Fin → (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω))
3026, 29impbii 209 . . . . . . 7 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) ↔ 𝑦 ∈ Fin)
3118, 30bitri 275 . . . . . 6 (𝑦 ∈ (card “ ω) ↔ 𝑦 ∈ Fin)
3231eqriv 2727 . . . . 5 (card “ ω) = Fin
3312, 14, 323eqtri 2757 . . . 4 dom (𝐺 ∘ card) = Fin
34 df-fn 6517 . . . 4 ((𝐺 ∘ card) Fn Fin ↔ (Fun (𝐺 ∘ card) ∧ dom (𝐺 ∘ card) = Fin))
3511, 33, 34mpbir2an 711 . . 3 (𝐺 ∘ card) Fn Fin
36 hashkf.2 . . . 4 𝐾 = (𝐺 ∘ card)
3736fneq1i 6618 . . 3 (𝐾 Fn Fin ↔ (𝐺 ∘ card) Fn Fin)
3835, 37mpbir 231 . 2 𝐾 Fn Fin
3936fveq1i 6862 . . . . 5 (𝐾𝑦) = ((𝐺 ∘ card)‘𝑦)
40 fvco 6962 . . . . . 6 ((Fun card ∧ 𝑦 ∈ dom card) → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦)))
419, 27, 40sylancr 587 . . . . 5 (𝑦 ∈ Fin → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦)))
4239, 41eqtrid 2777 . . . 4 (𝑦 ∈ Fin → (𝐾𝑦) = (𝐺‘(card‘𝑦)))
432hashgf1o 13943 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
44 f1of 6803 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
4543, 44ax-mp 5 . . . . . 6 𝐺:ω⟶ℕ0
4645ffvelcdmi 7058 . . . . 5 ((card‘𝑦) ∈ ω → (𝐺‘(card‘𝑦)) ∈ ℕ0)
4728, 46syl 17 . . . 4 (𝑦 ∈ Fin → (𝐺‘(card‘𝑦)) ∈ ℕ0)
4842, 47eqeltrd 2829 . . 3 (𝑦 ∈ Fin → (𝐾𝑦) ∈ ℕ0)
4948rgen 3047 . 2 𝑦 ∈ Fin (𝐾𝑦) ∈ ℕ0
50 ffnfv 7094 . 2 (𝐾:Fin⟶ℕ0 ↔ (𝐾 Fn Fin ∧ ∀𝑦 ∈ Fin (𝐾𝑦) ∈ ℕ0))
5138, 49, 50mpbir2an 711 1 𝐾:Fin⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  Vcvv 3450   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cres 5643  cima 5644  ccom 5645  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  ωcom 7845  reccrdg 8380  cen 8918  Fincfn 8921  cardccrd 9895  0cc0 11075  1c1 11076   + caddc 11078  0cn0 12449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801
This theorem is referenced by:  hashgval  14305  hashinf  14307  hashfxnn0  14309
  Copyright terms: Public domain W3C validator