MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashkf Structured version   Visualization version   GIF version

Theorem hashkf 13974
Description: The finite part of the size function maps all finite sets to their cardinality, as members of 0. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
hashgval.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
hashkf.2 𝐾 = (𝐺 ∘ card)
Assertion
Ref Expression
hashkf 𝐾:Fin⟶ℕ0

Proof of Theorem hashkf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frfnom 8236 . . . . . . 7 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω
2 hashgval.1 . . . . . . . 8 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
32fneq1i 6514 . . . . . . 7 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω)
41, 3mpbir 230 . . . . . 6 𝐺 Fn ω
5 fnfun 6517 . . . . . 6 (𝐺 Fn ω → Fun 𝐺)
64, 5ax-mp 5 . . . . 5 Fun 𝐺
7 cardf2 9632 . . . . . 6 card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On
8 ffun 6587 . . . . . 6 (card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On → Fun card)
97, 8ax-mp 5 . . . . 5 Fun card
10 funco 6458 . . . . 5 ((Fun 𝐺 ∧ Fun card) → Fun (𝐺 ∘ card))
116, 9, 10mp2an 688 . . . 4 Fun (𝐺 ∘ card)
12 dmco 6147 . . . . 5 dom (𝐺 ∘ card) = (card “ dom 𝐺)
134fndmi 6521 . . . . . 6 dom 𝐺 = ω
1413imaeq2i 5956 . . . . 5 (card “ dom 𝐺) = (card “ ω)
15 funfn 6448 . . . . . . . . 9 (Fun card ↔ card Fn dom card)
169, 15mpbi 229 . . . . . . . 8 card Fn dom card
17 elpreima 6917 . . . . . . . 8 (card Fn dom card → (𝑦 ∈ (card “ ω) ↔ (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω)))
1816, 17ax-mp 5 . . . . . . 7 (𝑦 ∈ (card “ ω) ↔ (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω))
19 id 22 . . . . . . . . . 10 ((card‘𝑦) ∈ ω → (card‘𝑦) ∈ ω)
20 cardid2 9642 . . . . . . . . . . 11 (𝑦 ∈ dom card → (card‘𝑦) ≈ 𝑦)
2120ensymd 8746 . . . . . . . . . 10 (𝑦 ∈ dom card → 𝑦 ≈ (card‘𝑦))
22 breq2 5074 . . . . . . . . . . 11 (𝑥 = (card‘𝑦) → (𝑦𝑥𝑦 ≈ (card‘𝑦)))
2322rspcev 3552 . . . . . . . . . 10 (((card‘𝑦) ∈ ω ∧ 𝑦 ≈ (card‘𝑦)) → ∃𝑥 ∈ ω 𝑦𝑥)
2419, 21, 23syl2anr 596 . . . . . . . . 9 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) → ∃𝑥 ∈ ω 𝑦𝑥)
25 isfi 8719 . . . . . . . . 9 (𝑦 ∈ Fin ↔ ∃𝑥 ∈ ω 𝑦𝑥)
2624, 25sylibr 233 . . . . . . . 8 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ Fin)
27 finnum 9637 . . . . . . . . 9 (𝑦 ∈ Fin → 𝑦 ∈ dom card)
28 ficardom 9650 . . . . . . . . 9 (𝑦 ∈ Fin → (card‘𝑦) ∈ ω)
2927, 28jca 511 . . . . . . . 8 (𝑦 ∈ Fin → (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω))
3026, 29impbii 208 . . . . . . 7 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) ↔ 𝑦 ∈ Fin)
3118, 30bitri 274 . . . . . 6 (𝑦 ∈ (card “ ω) ↔ 𝑦 ∈ Fin)
3231eqriv 2735 . . . . 5 (card “ ω) = Fin
3312, 14, 323eqtri 2770 . . . 4 dom (𝐺 ∘ card) = Fin
34 df-fn 6421 . . . 4 ((𝐺 ∘ card) Fn Fin ↔ (Fun (𝐺 ∘ card) ∧ dom (𝐺 ∘ card) = Fin))
3511, 33, 34mpbir2an 707 . . 3 (𝐺 ∘ card) Fn Fin
36 hashkf.2 . . . 4 𝐾 = (𝐺 ∘ card)
3736fneq1i 6514 . . 3 (𝐾 Fn Fin ↔ (𝐺 ∘ card) Fn Fin)
3835, 37mpbir 230 . 2 𝐾 Fn Fin
3936fveq1i 6757 . . . . 5 (𝐾𝑦) = ((𝐺 ∘ card)‘𝑦)
40 fvco 6848 . . . . . 6 ((Fun card ∧ 𝑦 ∈ dom card) → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦)))
419, 27, 40sylancr 586 . . . . 5 (𝑦 ∈ Fin → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦)))
4239, 41eqtrid 2790 . . . 4 (𝑦 ∈ Fin → (𝐾𝑦) = (𝐺‘(card‘𝑦)))
432hashgf1o 13619 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
44 f1of 6700 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
4543, 44ax-mp 5 . . . . . 6 𝐺:ω⟶ℕ0
4645ffvelrni 6942 . . . . 5 ((card‘𝑦) ∈ ω → (𝐺‘(card‘𝑦)) ∈ ℕ0)
4728, 46syl 17 . . . 4 (𝑦 ∈ Fin → (𝐺‘(card‘𝑦)) ∈ ℕ0)
4842, 47eqeltrd 2839 . . 3 (𝑦 ∈ Fin → (𝐾𝑦) ∈ ℕ0)
4948rgen 3073 . 2 𝑦 ∈ Fin (𝐾𝑦) ∈ ℕ0
50 ffnfv 6974 . 2 (𝐾:Fin⟶ℕ0 ↔ (𝐾 Fn Fin ∧ ∀𝑦 ∈ Fin (𝐾𝑦) ∈ ℕ0))
5138, 49, 50mpbir2an 707 1 𝐾:Fin⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  cres 5582  cima 5583  ccom 5584  Oncon0 6251  Fun wfun 6412   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  ωcom 7687  reccrdg 8211  cen 8688  Fincfn 8691  cardccrd 9624  0cc0 10802  1c1 10803   + caddc 10805  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512
This theorem is referenced by:  hashgval  13975  hashinf  13977  hashfxnn0  13979
  Copyright terms: Public domain W3C validator