MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashinf Structured version   Visualization version   GIF version

Theorem hashinf 14374
Description: The value of the function on an infinite set. (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashinf ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)

Proof of Theorem hashinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3501 . 2 (𝐴𝑉𝐴 ∈ V)
2 eldif 3961 . . 3 (𝐴 ∈ (V ∖ Fin) ↔ (𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin))
3 df-hash 14370 . . . . . . 7 ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
43reseq1i 5993 . . . . . 6 (♯ ↾ (V ∖ Fin)) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ (V ∖ Fin))
5 resundir 6012 . . . . . 6 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ (V ∖ Fin)) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)))
6 disjdif 4472 . . . . . . . . 9 (Fin ∩ (V ∖ Fin)) = ∅
7 eqid 2737 . . . . . . . . . . 11 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
8 eqid 2737 . . . . . . . . . . 11 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
97, 8hashkf 14371 . . . . . . . . . 10 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0
10 ffn 6736 . . . . . . . . . 10 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin)
11 fnresdisj 6688 . . . . . . . . . 10 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin → ((Fin ∩ (V ∖ Fin)) = ∅ ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅))
129, 10, 11mp2b 10 . . . . . . . . 9 ((Fin ∩ (V ∖ Fin)) = ∅ ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅)
136, 12mpbi 230 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅
14 pnfex 11314 . . . . . . . . . 10 +∞ ∈ V
1514fconst 6794 . . . . . . . . 9 ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}
16 ffn 6736 . . . . . . . . 9 (((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} → ((V ∖ Fin) × {+∞}) Fn (V ∖ Fin))
17 fnresdm 6687 . . . . . . . . 9 (((V ∖ Fin) × {+∞}) Fn (V ∖ Fin) → (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞}))
1815, 16, 17mp2b 10 . . . . . . . 8 (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞})
1913, 18uneq12i 4166 . . . . . . 7 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) = (∅ ∪ ((V ∖ Fin) × {+∞}))
20 uncom 4158 . . . . . . 7 (∅ ∪ ((V ∖ Fin) × {+∞})) = (((V ∖ Fin) × {+∞}) ∪ ∅)
21 un0 4394 . . . . . . 7 (((V ∖ Fin) × {+∞}) ∪ ∅) = ((V ∖ Fin) × {+∞})
2219, 20, 213eqtri 2769 . . . . . 6 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) = ((V ∖ Fin) × {+∞})
234, 5, 223eqtri 2769 . . . . 5 (♯ ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞})
2423fveq1i 6907 . . . 4 ((♯ ↾ (V ∖ Fin))‘𝐴) = (((V ∖ Fin) × {+∞})‘𝐴)
25 fvres 6925 . . . 4 (𝐴 ∈ (V ∖ Fin) → ((♯ ↾ (V ∖ Fin))‘𝐴) = (♯‘𝐴))
2614fvconst2 7224 . . . 4 (𝐴 ∈ (V ∖ Fin) → (((V ∖ Fin) × {+∞})‘𝐴) = +∞)
2724, 25, 263eqtr3a 2801 . . 3 (𝐴 ∈ (V ∖ Fin) → (♯‘𝐴) = +∞)
282, 27sylbir 235 . 2 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
291, 28sylan 580 1 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  cun 3949  cin 3950  c0 4333  {csn 4626  cmpt 5225   × cxp 5683  cres 5687  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  ωcom 7887  reccrdg 8449  Fincfn 8985  cardccrd 9975  0cc0 11155  1c1 11156   + caddc 11158  +∞cpnf 11292  0cn0 12526  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-hash 14370
This theorem is referenced by:  hashbnd  14375  hasheni  14387  hasheqf1oi  14390  hashclb  14397  nfile  14398  hasheq0  14402  hashdom  14418  hashdomi  14419  hashunx  14425  hashge1  14428  hashss  14448  hash1snb  14458  hashfundm  14481  hashge2el2dif  14519  odhash  19592  lt6abl  19913  upgrfi  29108  hashxpe  32811  lbslelsp  33648  esumpinfsum  34078  hasheuni  34086  pgrpgt2nabl  48282
  Copyright terms: Public domain W3C validator