![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashinf | Structured version Visualization version GIF version |
Description: The value of the ♯ function on an infinite set. (Contributed by Mario Carneiro, 13-Jul-2014.) |
Ref | Expression |
---|---|
hashinf | ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | eldif 3986 | . . 3 ⊢ (𝐴 ∈ (V ∖ Fin) ↔ (𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin)) | |
3 | df-hash 14380 | . . . . . . 7 ⊢ ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) | |
4 | 3 | reseq1i 6005 | . . . . . 6 ⊢ (♯ ↾ (V ∖ Fin)) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ (V ∖ Fin)) |
5 | resundir 6024 | . . . . . 6 ⊢ ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ (V ∖ Fin)) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) | |
6 | disjdif 4495 | . . . . . . . . 9 ⊢ (Fin ∩ (V ∖ Fin)) = ∅ | |
7 | eqid 2740 | . . . . . . . . . . 11 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
8 | eqid 2740 | . . . . . . . . . . 11 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) | |
9 | 7, 8 | hashkf 14381 | . . . . . . . . . 10 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 |
10 | ffn 6747 | . . . . . . . . . 10 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin) | |
11 | fnresdisj 6700 | . . . . . . . . . 10 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin → ((Fin ∩ (V ∖ Fin)) = ∅ ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅)) | |
12 | 9, 10, 11 | mp2b 10 | . . . . . . . . 9 ⊢ ((Fin ∩ (V ∖ Fin)) = ∅ ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅) |
13 | 6, 12 | mpbi 230 | . . . . . . . 8 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅ |
14 | pnfex 11343 | . . . . . . . . . 10 ⊢ +∞ ∈ V | |
15 | 14 | fconst 6807 | . . . . . . . . 9 ⊢ ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} |
16 | ffn 6747 | . . . . . . . . 9 ⊢ (((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} → ((V ∖ Fin) × {+∞}) Fn (V ∖ Fin)) | |
17 | fnresdm 6699 | . . . . . . . . 9 ⊢ (((V ∖ Fin) × {+∞}) Fn (V ∖ Fin) → (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞})) | |
18 | 15, 16, 17 | mp2b 10 | . . . . . . . 8 ⊢ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞}) |
19 | 13, 18 | uneq12i 4189 | . . . . . . 7 ⊢ ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) = (∅ ∪ ((V ∖ Fin) × {+∞})) |
20 | uncom 4181 | . . . . . . 7 ⊢ (∅ ∪ ((V ∖ Fin) × {+∞})) = (((V ∖ Fin) × {+∞}) ∪ ∅) | |
21 | un0 4417 | . . . . . . 7 ⊢ (((V ∖ Fin) × {+∞}) ∪ ∅) = ((V ∖ Fin) × {+∞}) | |
22 | 19, 20, 21 | 3eqtri 2772 | . . . . . 6 ⊢ ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) = ((V ∖ Fin) × {+∞}) |
23 | 4, 5, 22 | 3eqtri 2772 | . . . . 5 ⊢ (♯ ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞}) |
24 | 23 | fveq1i 6921 | . . . 4 ⊢ ((♯ ↾ (V ∖ Fin))‘𝐴) = (((V ∖ Fin) × {+∞})‘𝐴) |
25 | fvres 6939 | . . . 4 ⊢ (𝐴 ∈ (V ∖ Fin) → ((♯ ↾ (V ∖ Fin))‘𝐴) = (♯‘𝐴)) | |
26 | 14 | fvconst2 7241 | . . . 4 ⊢ (𝐴 ∈ (V ∖ Fin) → (((V ∖ Fin) × {+∞})‘𝐴) = +∞) |
27 | 24, 25, 26 | 3eqtr3a 2804 | . . 3 ⊢ (𝐴 ∈ (V ∖ Fin) → (♯‘𝐴) = +∞) |
28 | 2, 27 | sylbir 235 | . 2 ⊢ ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) |
29 | 1, 28 | sylan 579 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 ↦ cmpt 5249 × cxp 5698 ↾ cres 5702 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ωcom 7903 reccrdg 8465 Fincfn 9003 cardccrd 10004 0cc0 11184 1c1 11185 + caddc 11187 +∞cpnf 11321 ℕ0cn0 12553 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-hash 14380 |
This theorem is referenced by: hashbnd 14385 hasheni 14397 hasheqf1oi 14400 hashclb 14407 nfile 14408 hasheq0 14412 hashdom 14428 hashdomi 14429 hashunx 14435 hashge1 14438 hashss 14458 hash1snb 14468 hashfundm 14491 hashge2el2dif 14529 odhash 19616 lt6abl 19937 upgrfi 29126 hashxpe 32814 esumpinfsum 34041 hasheuni 34049 pgrpgt2nabl 48091 |
Copyright terms: Public domain | W3C validator |