Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashinf | Structured version Visualization version GIF version |
Description: The value of the ♯ function on an infinite set. (Contributed by Mario Carneiro, 13-Jul-2014.) |
Ref | Expression |
---|---|
hashinf | ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3428 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | eldif 3868 | . . 3 ⊢ (𝐴 ∈ (V ∖ Fin) ↔ (𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin)) | |
3 | df-hash 13741 | . . . . . . 7 ⊢ ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) | |
4 | 3 | reseq1i 5819 | . . . . . 6 ⊢ (♯ ↾ (V ∖ Fin)) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ (V ∖ Fin)) |
5 | resundir 5838 | . . . . . 6 ⊢ ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ (V ∖ Fin)) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) | |
6 | disjdif 4368 | . . . . . . . . 9 ⊢ (Fin ∩ (V ∖ Fin)) = ∅ | |
7 | eqid 2758 | . . . . . . . . . . 11 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
8 | eqid 2758 | . . . . . . . . . . 11 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) | |
9 | 7, 8 | hashkf 13742 | . . . . . . . . . 10 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 |
10 | ffn 6498 | . . . . . . . . . 10 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin) | |
11 | fnresdisj 6450 | . . . . . . . . . 10 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin → ((Fin ∩ (V ∖ Fin)) = ∅ ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅)) | |
12 | 9, 10, 11 | mp2b 10 | . . . . . . . . 9 ⊢ ((Fin ∩ (V ∖ Fin)) = ∅ ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅) |
13 | 6, 12 | mpbi 233 | . . . . . . . 8 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅ |
14 | pnfex 10732 | . . . . . . . . . 10 ⊢ +∞ ∈ V | |
15 | 14 | fconst 6550 | . . . . . . . . 9 ⊢ ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} |
16 | ffn 6498 | . . . . . . . . 9 ⊢ (((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} → ((V ∖ Fin) × {+∞}) Fn (V ∖ Fin)) | |
17 | fnresdm 6449 | . . . . . . . . 9 ⊢ (((V ∖ Fin) × {+∞}) Fn (V ∖ Fin) → (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞})) | |
18 | 15, 16, 17 | mp2b 10 | . . . . . . . 8 ⊢ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞}) |
19 | 13, 18 | uneq12i 4066 | . . . . . . 7 ⊢ ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) = (∅ ∪ ((V ∖ Fin) × {+∞})) |
20 | uncom 4058 | . . . . . . 7 ⊢ (∅ ∪ ((V ∖ Fin) × {+∞})) = (((V ∖ Fin) × {+∞}) ∪ ∅) | |
21 | un0 4286 | . . . . . . 7 ⊢ (((V ∖ Fin) × {+∞}) ∪ ∅) = ((V ∖ Fin) × {+∞}) | |
22 | 19, 20, 21 | 3eqtri 2785 | . . . . . 6 ⊢ ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) = ((V ∖ Fin) × {+∞}) |
23 | 4, 5, 22 | 3eqtri 2785 | . . . . 5 ⊢ (♯ ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞}) |
24 | 23 | fveq1i 6659 | . . . 4 ⊢ ((♯ ↾ (V ∖ Fin))‘𝐴) = (((V ∖ Fin) × {+∞})‘𝐴) |
25 | fvres 6677 | . . . 4 ⊢ (𝐴 ∈ (V ∖ Fin) → ((♯ ↾ (V ∖ Fin))‘𝐴) = (♯‘𝐴)) | |
26 | 14 | fvconst2 6957 | . . . 4 ⊢ (𝐴 ∈ (V ∖ Fin) → (((V ∖ Fin) × {+∞})‘𝐴) = +∞) |
27 | 24, 25, 26 | 3eqtr3a 2817 | . . 3 ⊢ (𝐴 ∈ (V ∖ Fin) → (♯‘𝐴) = +∞) |
28 | 2, 27 | sylbir 238 | . 2 ⊢ ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) |
29 | 1, 28 | sylan 583 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∖ cdif 3855 ∪ cun 3856 ∩ cin 3857 ∅c0 4225 {csn 4522 ↦ cmpt 5112 × cxp 5522 ↾ cres 5526 ∘ ccom 5528 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ωcom 7579 reccrdg 8055 Fincfn 8527 cardccrd 9397 0cc0 10575 1c1 10576 + caddc 10578 +∞cpnf 10710 ℕ0cn0 11934 ♯chash 13740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-hash 13741 |
This theorem is referenced by: hashbnd 13746 hasheni 13758 hasheqf1oi 13762 hashclb 13769 nfile 13770 hasheq0 13774 hashdom 13790 hashdomi 13791 hashunx 13797 hashge1 13800 hashss 13820 hash1snb 13830 hashge2el2dif 13890 odhash 18766 lt6abl 19083 upgrfi 26983 hashxpe 30651 esumpinfsum 31564 hasheuni 31572 hashfundm 32582 pgrpgt2nabl 45135 |
Copyright terms: Public domain | W3C validator |