MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashinf Structured version   Visualization version   GIF version

Theorem hashinf 14239
Description: The value of the function on an infinite set. (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashinf ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)

Proof of Theorem hashinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝐴𝑉𝐴 ∈ V)
2 eldif 3912 . . 3 (𝐴 ∈ (V ∖ Fin) ↔ (𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin))
3 df-hash 14235 . . . . . . 7 ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
43reseq1i 5924 . . . . . 6 (♯ ↾ (V ∖ Fin)) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ (V ∖ Fin))
5 resundir 5943 . . . . . 6 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ (V ∖ Fin)) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)))
6 disjdif 4422 . . . . . . . . 9 (Fin ∩ (V ∖ Fin)) = ∅
7 eqid 2731 . . . . . . . . . . 11 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
8 eqid 2731 . . . . . . . . . . 11 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
97, 8hashkf 14236 . . . . . . . . . 10 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0
10 ffn 6651 . . . . . . . . . 10 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin)
11 fnresdisj 6601 . . . . . . . . . 10 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin → ((Fin ∩ (V ∖ Fin)) = ∅ ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅))
129, 10, 11mp2b 10 . . . . . . . . 9 ((Fin ∩ (V ∖ Fin)) = ∅ ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅)
136, 12mpbi 230 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅
14 pnfex 11162 . . . . . . . . . 10 +∞ ∈ V
1514fconst 6709 . . . . . . . . 9 ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}
16 ffn 6651 . . . . . . . . 9 (((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} → ((V ∖ Fin) × {+∞}) Fn (V ∖ Fin))
17 fnresdm 6600 . . . . . . . . 9 (((V ∖ Fin) × {+∞}) Fn (V ∖ Fin) → (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞}))
1815, 16, 17mp2b 10 . . . . . . . 8 (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞})
1913, 18uneq12i 4116 . . . . . . 7 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) = (∅ ∪ ((V ∖ Fin) × {+∞}))
20 uncom 4108 . . . . . . 7 (∅ ∪ ((V ∖ Fin) × {+∞})) = (((V ∖ Fin) × {+∞}) ∪ ∅)
21 un0 4344 . . . . . . 7 (((V ∖ Fin) × {+∞}) ∪ ∅) = ((V ∖ Fin) × {+∞})
2219, 20, 213eqtri 2758 . . . . . 6 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) = ((V ∖ Fin) × {+∞})
234, 5, 223eqtri 2758 . . . . 5 (♯ ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞})
2423fveq1i 6823 . . . 4 ((♯ ↾ (V ∖ Fin))‘𝐴) = (((V ∖ Fin) × {+∞})‘𝐴)
25 fvres 6841 . . . 4 (𝐴 ∈ (V ∖ Fin) → ((♯ ↾ (V ∖ Fin))‘𝐴) = (♯‘𝐴))
2614fvconst2 7138 . . . 4 (𝐴 ∈ (V ∖ Fin) → (((V ∖ Fin) × {+∞})‘𝐴) = +∞)
2724, 25, 263eqtr3a 2790 . . 3 (𝐴 ∈ (V ∖ Fin) → (♯‘𝐴) = +∞)
282, 27sylbir 235 . 2 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
291, 28sylan 580 1 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3899  cun 3900  cin 3901  c0 4283  {csn 4576  cmpt 5172   × cxp 5614  cres 5618  ccom 5620   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  ωcom 7796  reccrdg 8328  Fincfn 8869  cardccrd 9825  0cc0 11003  1c1 11004   + caddc 11006  +∞cpnf 11140  0cn0 12378  chash 14234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-hash 14235
This theorem is referenced by:  hashbnd  14240  hasheni  14252  hasheqf1oi  14255  hashclb  14262  nfile  14263  hasheq0  14267  hashdom  14283  hashdomi  14284  hashunx  14290  hashge1  14293  hashss  14313  hash1snb  14323  hashfundm  14346  hashge2el2dif  14384  odhash  19484  lt6abl  19805  upgrfi  29067  hashxpe  32784  lbslelsp  33605  esumpinfsum  34085  hasheuni  34093  pgrpgt2nabl  48396
  Copyright terms: Public domain W3C validator