MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashinf Structured version   Visualization version   GIF version

Theorem hashinf 14244
Description: The value of the function on an infinite set. (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashinf ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)

Proof of Theorem hashinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝐴𝑉𝐴 ∈ V)
2 eldif 3908 . . 3 (𝐴 ∈ (V ∖ Fin) ↔ (𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin))
3 df-hash 14240 . . . . . . 7 ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
43reseq1i 5928 . . . . . 6 (♯ ↾ (V ∖ Fin)) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ (V ∖ Fin))
5 resundir 5947 . . . . . 6 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ (V ∖ Fin)) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)))
6 disjdif 4421 . . . . . . . . 9 (Fin ∩ (V ∖ Fin)) = ∅
7 eqid 2733 . . . . . . . . . . 11 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
8 eqid 2733 . . . . . . . . . . 11 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
97, 8hashkf 14241 . . . . . . . . . 10 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0
10 ffn 6656 . . . . . . . . . 10 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin)
11 fnresdisj 6606 . . . . . . . . . 10 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin → ((Fin ∩ (V ∖ Fin)) = ∅ ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅))
129, 10, 11mp2b 10 . . . . . . . . 9 ((Fin ∩ (V ∖ Fin)) = ∅ ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅)
136, 12mpbi 230 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) = ∅
14 pnfex 11172 . . . . . . . . . 10 +∞ ∈ V
1514fconst 6714 . . . . . . . . 9 ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}
16 ffn 6656 . . . . . . . . 9 (((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} → ((V ∖ Fin) × {+∞}) Fn (V ∖ Fin))
17 fnresdm 6605 . . . . . . . . 9 (((V ∖ Fin) × {+∞}) Fn (V ∖ Fin) → (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞}))
1815, 16, 17mp2b 10 . . . . . . . 8 (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞})
1913, 18uneq12i 4115 . . . . . . 7 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) = (∅ ∪ ((V ∖ Fin) × {+∞}))
20 uncom 4107 . . . . . . 7 (∅ ∪ ((V ∖ Fin) × {+∞})) = (((V ∖ Fin) × {+∞}) ∪ ∅)
21 un0 4343 . . . . . . 7 (((V ∖ Fin) × {+∞}) ∪ ∅) = ((V ∖ Fin) × {+∞})
2219, 20, 213eqtri 2760 . . . . . 6 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ (V ∖ Fin)) ∪ (((V ∖ Fin) × {+∞}) ↾ (V ∖ Fin))) = ((V ∖ Fin) × {+∞})
234, 5, 223eqtri 2760 . . . . 5 (♯ ↾ (V ∖ Fin)) = ((V ∖ Fin) × {+∞})
2423fveq1i 6829 . . . 4 ((♯ ↾ (V ∖ Fin))‘𝐴) = (((V ∖ Fin) × {+∞})‘𝐴)
25 fvres 6847 . . . 4 (𝐴 ∈ (V ∖ Fin) → ((♯ ↾ (V ∖ Fin))‘𝐴) = (♯‘𝐴))
2614fvconst2 7144 . . . 4 (𝐴 ∈ (V ∖ Fin) → (((V ∖ Fin) × {+∞})‘𝐴) = +∞)
2724, 25, 263eqtr3a 2792 . . 3 (𝐴 ∈ (V ∖ Fin) → (♯‘𝐴) = +∞)
282, 27sylbir 235 . 2 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
291, 28sylan 580 1 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  cun 3896  cin 3897  c0 4282  {csn 4575  cmpt 5174   × cxp 5617  cres 5621  ccom 5623   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  ωcom 7802  reccrdg 8334  Fincfn 8875  cardccrd 9835  0cc0 11013  1c1 11014   + caddc 11016  +∞cpnf 11150  0cn0 12388  chash 14239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-hash 14240
This theorem is referenced by:  hashbnd  14245  hasheni  14257  hasheqf1oi  14260  hashclb  14267  nfile  14268  hasheq0  14272  hashdom  14288  hashdomi  14289  hashunx  14295  hashge1  14298  hashss  14318  hash1snb  14328  hashfundm  14351  hashge2el2dif  14389  odhash  19488  lt6abl  19809  upgrfi  29071  hashxpe  32794  lbslelsp  33631  esumpinfsum  34111  hasheuni  34119  pgrpgt2nabl  48490
  Copyright terms: Public domain W3C validator