HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ishst Structured version   Visualization version   GIF version

Theorem ishst 30001
Description: Property of a complex Hilbert-space-valued state. Definition of CH-states in [Mayet3] p. 9. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
ishst (𝑆 ∈ CHStates ↔ (𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem ishst
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 28786 . . . 4 ℋ ∈ V
2 chex 29013 . . . 4 C ∈ V
31, 2elmap 8422 . . 3 (𝑆 ∈ ( ℋ ↑m C ) ↔ 𝑆: C ⟶ ℋ)
43anbi1i 626 . 2 ((𝑆 ∈ ( ℋ ↑m C ) ∧ ((norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))) ↔ (𝑆: C ⟶ ℋ ∧ ((norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))))
5 fveq1 6648 . . . . 5 (𝑓 = 𝑆 → (𝑓‘ ℋ) = (𝑆‘ ℋ))
65fveqeq2d 6657 . . . 4 (𝑓 = 𝑆 → ((norm‘(𝑓‘ ℋ)) = 1 ↔ (norm‘(𝑆‘ ℋ)) = 1))
7 fveq1 6648 . . . . . . . . 9 (𝑓 = 𝑆 → (𝑓𝑥) = (𝑆𝑥))
8 fveq1 6648 . . . . . . . . 9 (𝑓 = 𝑆 → (𝑓𝑦) = (𝑆𝑦))
97, 8oveq12d 7157 . . . . . . . 8 (𝑓 = 𝑆 → ((𝑓𝑥) ·ih (𝑓𝑦)) = ((𝑆𝑥) ·ih (𝑆𝑦)))
109eqeq1d 2803 . . . . . . 7 (𝑓 = 𝑆 → (((𝑓𝑥) ·ih (𝑓𝑦)) = 0 ↔ ((𝑆𝑥) ·ih (𝑆𝑦)) = 0))
11 fveq1 6648 . . . . . . . 8 (𝑓 = 𝑆 → (𝑓‘(𝑥 𝑦)) = (𝑆‘(𝑥 𝑦)))
127, 8oveq12d 7157 . . . . . . . 8 (𝑓 = 𝑆 → ((𝑓𝑥) + (𝑓𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))
1311, 12eqeq12d 2817 . . . . . . 7 (𝑓 = 𝑆 → ((𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)) ↔ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))
1410, 13anbi12d 633 . . . . . 6 (𝑓 = 𝑆 → ((((𝑓𝑥) ·ih (𝑓𝑦)) = 0 ∧ (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))) ↔ (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
1514imbi2d 344 . . . . 5 (𝑓 = 𝑆 → ((𝑥 ⊆ (⊥‘𝑦) → (((𝑓𝑥) ·ih (𝑓𝑦)) = 0 ∧ (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)))) ↔ (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
16152ralbidv 3167 . . . 4 (𝑓 = 𝑆 → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑓𝑥) ·ih (𝑓𝑦)) = 0 ∧ (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
176, 16anbi12d 633 . . 3 (𝑓 = 𝑆 → (((norm‘(𝑓‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑓𝑥) ·ih (𝑓𝑦)) = 0 ∧ (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))))) ↔ ((norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))))
18 df-hst 29999 . . 3 CHStates = {𝑓 ∈ ( ℋ ↑m C ) ∣ ((norm‘(𝑓‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑓𝑥) ·ih (𝑓𝑦)) = 0 ∧ (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)))))}
1917, 18elrab2 3634 . 2 (𝑆 ∈ CHStates ↔ (𝑆 ∈ ( ℋ ↑m C ) ∧ ((norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))))
20 3anass 1092 . 2 ((𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))) ↔ (𝑆: C ⟶ ℋ ∧ ((norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))))
214, 19, 203bitr4i 306 1 (𝑆 ∈ CHStates ↔ (𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  wss 3884  wf 6324  cfv 6328  (class class class)co 7139  m cmap 8393  0cc0 10530  1c1 10531  chba 28706   + cva 28707   ·ih csp 28709  normcno 28710   C cch 28716  cort 28717   chj 28720  CHStateschst 28750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-hilex 28786
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-map 8395  df-sh 28994  df-ch 29008  df-hst 29999
This theorem is referenced by:  hstcl  30004  hst1a  30005  hstel2  30006  hstrlem3a  30047
  Copyright terms: Public domain W3C validator