![]() |
Metamath
Proof Explorer Theorem List (p. 321 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30438) |
![]() (30439-31961) |
![]() (31962-47939) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rmoun 32001 | "At most one" restricted existential quantifier for a union implies the same quantifier on both sets. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 → (∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | rmounid 32002* | A case where an "at most one" restricted existential quantifier for a union is equivalent to such a quantifier for one of the sets. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ¬ 𝜓) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | riotaeqbidva 32003* | Equivalent wff's yield equal restricted definition binders (deduction form). (raleqbidva 3325 analog.) (Contributed by Thierry Arnoux, 29-Jan-2025.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | dmrab 32004* | Domain of a restricted class abstraction over a cartesian product. (Contributed by Thierry Arnoux, 3-Jul-2023.) |
⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ 𝜓)) ⇒ ⊢ dom {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝜓} | ||
Theorem | difrab2 32005 | Difference of two restricted class abstractions. Compare with difrab 4307. (Contributed by Thierry Arnoux, 3-Jan-2022.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐵 ∣ 𝜑}) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} | ||
Theorem | rabexgfGS 32006 | Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
Theorem | rabsnel 32007* | Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ 𝐴) | ||
Theorem | eqrrabd 32008* | Deduce equality with a restricted abstraction. (Contributed by Thierry Arnoux, 11-Apr-2024.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) ⇒ ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
Theorem | foresf1o 32009* | From a surjective function, *choose* a subset of the domain, such that the restricted function is bijective. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐵) | ||
Theorem | rabfodom 32010* | Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) ⇒ ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
Theorem | abrexdomjm 32011* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) | ||
Theorem | abrexdom2jm 32012* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = 𝐵} ≼ 𝐴) | ||
Theorem | abrexexd 32013* | Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐴 ∈ V) ⇒ ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
Theorem | elabreximd 32014* | Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) | ||
Theorem | elabreximdv 32015* | Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) | ||
Theorem | abrexss 32016* | A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶) | ||
Theorem | elunsn 32017 | Elementhood to a union with a singleton. (Contributed by Thierry Arnoux, 14-Dec-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐶))) | ||
Theorem | nelun 32018 | Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
⊢ (𝐴 = (𝐵 ∪ 𝐶) → (¬ 𝑋 ∈ 𝐴 ↔ (¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶))) | ||
Theorem | snsssng 32019 | If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) (Revised by Thierry Arnoux, 11-Apr-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵) | ||
Theorem | inin 32020 | Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) | ||
Theorem | inindif 32021 | See inundif 4477. (Contributed by Thierry Arnoux, 13-Sep-2017.) |
⊢ ((𝐴 ∩ 𝐶) ∩ (𝐴 ∖ 𝐶)) = ∅ | ||
Theorem | difininv 32022 | Condition for the intersections of two sets with a given set to be equal. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ ((((𝐴 ∖ 𝐶) ∩ 𝐵) = ∅ ∧ ((𝐶 ∖ 𝐴) ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = (𝐶 ∩ 𝐵)) | ||
Theorem | difeq 32023 | Rewriting an equation with class difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
⊢ ((𝐴 ∖ 𝐵) = 𝐶 ↔ ((𝐶 ∩ 𝐵) = ∅ ∧ (𝐶 ∪ 𝐵) = (𝐴 ∪ 𝐵))) | ||
Theorem | eqdif 32024 | If both set differences of two sets are empty, those sets are equal. (Contributed by Thierry Arnoux, 16-Nov-2023.) |
⊢ (((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅) → 𝐴 = 𝐵) | ||
Theorem | indifbi 32025 | Two ways to express equality relative to a class 𝐴. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
⊢ ((𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐶) ↔ (𝐴 ∖ 𝐵) = (𝐴 ∖ 𝐶)) | ||
Theorem | diffib 32026 | Case where diffi 9181 is a biconditional. (Contributed by Thierry Arnoux, 27-Jun-2024.) |
⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin ↔ (𝐴 ∖ 𝐵) ∈ Fin)) | ||
Theorem | difxp1ss 32027 | Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
⊢ ((𝐴 ∖ 𝐶) × 𝐵) ⊆ (𝐴 × 𝐵) | ||
Theorem | difxp2ss 32028 | Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
⊢ (𝐴 × (𝐵 ∖ 𝐶)) ⊆ (𝐴 × 𝐵) | ||
Theorem | indifundif 32029 | A remarkable equation with sets. (Contributed by Thierry Arnoux, 18-May-2020.) |
⊢ (((𝐴 ∩ 𝐵) ∖ 𝐶) ∪ (𝐴 ∖ 𝐵)) = (𝐴 ∖ (𝐵 ∩ 𝐶)) | ||
Theorem | elpwincl1 32030 | Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝒫 𝐶) | ||
Theorem | elpwdifcl 32031 | Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐶) | ||
Theorem | elpwiuncl 32032* | Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝒫 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) | ||
Theorem | eqsnd 32033* | Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = {𝐵}) | ||
Theorem | elpreq 32034 | Equality wihin a pair. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
⊢ (𝜑 → 𝑋 ∈ {𝐴, 𝐵}) & ⊢ (𝜑 → 𝑌 ∈ {𝐴, 𝐵}) & ⊢ (𝜑 → (𝑋 = 𝐴 ↔ 𝑌 = 𝐴)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | nelpr 32035 | A set 𝐴 not in a pair is neither element of the pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶))) | ||
Theorem | inpr0 32036 | Rewrite an empty intersection with a pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ (¬ 𝐵 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴)) | ||
Theorem | neldifpr1 32037 | The first element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
⊢ ¬ 𝐴 ∈ (𝐶 ∖ {𝐴, 𝐵}) | ||
Theorem | neldifpr2 32038 | The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
⊢ ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) | ||
Theorem | unidifsnel 32039 | The other element of a pair is an element of the pair. (Contributed by Thierry Arnoux, 26-Aug-2017.) |
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ∈ 𝑃) | ||
Theorem | unidifsnne 32040 | The other element of a pair is not the known element. (Contributed by Thierry Arnoux, 26-Aug-2017.) |
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) | ||
Theorem | ifeqeqx 32041* | An equality theorem tailored for ballotlemsf1o 33810. (Contributed by Thierry Arnoux, 14-Apr-2017.) |
⊢ (𝑥 = 𝑋 → 𝐴 = 𝐶) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝑎) & ⊢ (𝑥 = 𝑋 → (𝜒 ↔ 𝜃)) & ⊢ (𝑥 = 𝑌 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝑎 = 𝐶) & ⊢ ((𝜑 ∧ 𝜓) → 𝜃) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) → 𝑎 = if(𝜒, 𝐴, 𝐵)) | ||
Theorem | elimifd 32042 | Elimination of a conditional operator contained in a wff 𝜒. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → (if(𝜓, 𝐴, 𝐵) = 𝐴 → (𝜒 ↔ 𝜃))) & ⊢ (𝜑 → (if(𝜓, 𝐴, 𝐵) = 𝐵 → (𝜒 ↔ 𝜏))) ⇒ ⊢ (𝜑 → (𝜒 ↔ ((𝜓 ∧ 𝜃) ∨ (¬ 𝜓 ∧ 𝜏)))) | ||
Theorem | elim2if 32043 | Elimination of two conditional operators contained in a wff 𝜒. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴 → (𝜒 ↔ 𝜃)) & ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 → (𝜒 ↔ 𝜏)) & ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 → (𝜒 ↔ 𝜂)) ⇒ ⊢ (𝜒 ↔ ((𝜑 ∧ 𝜃) ∨ (¬ 𝜑 ∧ ((𝜓 ∧ 𝜏) ∨ (¬ 𝜓 ∧ 𝜂))))) | ||
Theorem | elim2ifim 32044 | Elimination of two conditional operators for an implication. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴 → (𝜒 ↔ 𝜃)) & ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 → (𝜒 ↔ 𝜏)) & ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 → (𝜒 ↔ 𝜂)) & ⊢ (𝜑 → 𝜃) & ⊢ ((¬ 𝜑 ∧ 𝜓) → 𝜏) & ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜂) ⇒ ⊢ 𝜒 | ||
Theorem | ifeq3da 32045 | Given an expression 𝐶 containing if(𝜓, 𝐸, 𝐹), substitute (hypotheses .1 and .2) and evaluate (hypotheses .3 and .4) it for both cases at the same time. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ (if(𝜓, 𝐸, 𝐹) = 𝐸 → 𝐶 = 𝐺) & ⊢ (if(𝜓, 𝐸, 𝐹) = 𝐹 → 𝐶 = 𝐻) & ⊢ (𝜑 → 𝐺 = 𝐴) & ⊢ (𝜑 → 𝐻 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) | ||
Theorem | ifnetrue 32046 | Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ ((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑) | ||
Theorem | ifnefals 32047 | Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ ((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑) | ||
Theorem | ifnebib 32048 | The converse of ifbi 4549 holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ (𝐴 ≠ 𝐵 → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ (𝜑 ↔ 𝜓))) | ||
Theorem | uniinn0 32049* | Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
⊢ ((∪ 𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) | ||
Theorem | uniin1 32050* | Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
⊢ ∪ 𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = (∪ 𝐴 ∩ 𝐵) | ||
Theorem | uniin2 32051* | Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
⊢ ∪ 𝑥 ∈ 𝐵 (𝐴 ∩ 𝑥) = (𝐴 ∩ ∪ 𝐵) | ||
Theorem | difuncomp 32052 | Express a class difference using unions and class complements. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) | ||
Theorem | elpwunicl 32053 | Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020.) (Proof shortened by BJ, 6-Apr-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝒫 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝒫 𝐵) | ||
Theorem | cbviunf 32054* | Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 | ||
Theorem | iuneq12daf 32055 | Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 13-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) | ||
Theorem | iunin1f 32056 | Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5060 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) (Revised by Thierry Arnoux, 2-May-2020.) |
⊢ Ⅎ𝑥𝐶 ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) | ||
Theorem | ssiun3 32057* | Subset equivalence for an indexed union. (Contributed by Thierry Arnoux, 17-Oct-2016.) |
⊢ (∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | ssiun2sf 32058 | Subset relationship for an indexed union. (Contributed by Thierry Arnoux, 31-Dec-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | iuninc 32059* | The union of an increasing collection of sets is its last element. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
⊢ (𝜑 → 𝐹 Fn ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∪ 𝑛 ∈ (1...𝑖)(𝐹‘𝑛) = (𝐹‘𝑖)) | ||
Theorem | iundifdifd 32060* | The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
⊢ (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)))) | ||
Theorem | iundifdif 32061* | The intersection of a set is the complement of the union of the complements. TODO: shorten using iundifdifd 32060. (Contributed by Thierry Arnoux, 4-Sep-2016.) |
⊢ 𝑂 ∈ V & ⊢ 𝐴 ⊆ 𝒫 𝑂 ⇒ ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥))) | ||
Theorem | iunrdx 32062* | Re-index an indexed union. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
⊢ (𝜑 → 𝐹:𝐴–onto→𝐶) & ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) | ||
Theorem | iunpreima 32063* | Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) | ||
Theorem | iunrnmptss 32064* | A subset relation for an indexed union over the range of function expressed as a mapping. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐷) | ||
Theorem | iunxunsn 32065* | Appending a set to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) ⇒ ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) | ||
Theorem | iunxunpr 32066* | Appending two sets to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋, 𝑌})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ (𝐶 ∪ 𝐷))) | ||
Theorem | iinabrex 32067* | Rewriting an indexed intersection into an intersection of its image set. (Contributed by Thierry Arnoux, 15-Jun-2024.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | ||
Theorem | disjnf 32068* | In case 𝑥 is not free in 𝐵, disjointness is not so interesting since it reduces to cases where 𝐴 is a singleton. (Google Groups discussion with Peter Mazsa.) (Contributed by Thierry Arnoux, 26-Jul-2018.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ (𝐵 = ∅ ∨ ∃*𝑥 𝑥 ∈ 𝐴)) | ||
Theorem | cbvdisjf 32069* | Change bound variables in a disjoint collection. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) | ||
Theorem | disjss1f 32070 | A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) | ||
Theorem | disjeq1f 32071 | Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | ||
Theorem | disjxun0 32072* | Simplify a disjoint union. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = ∅) ⇒ ⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) | ||
Theorem | disjdifprg 32073* | A trivial partition into a subset and its complement. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Disj 𝑥 ∈ {(𝐵 ∖ 𝐴), 𝐴}𝑥) | ||
Theorem | disjdifprg2 32074* | A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ (𝐴 ∈ 𝑉 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) | ||
Theorem | disji2f 32075* | Property of a disjoint collection: if 𝐵(𝑥) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑥 ≠ 𝑌, then 𝐵 and 𝐶 are disjoint. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑥 ≠ 𝑌) → (𝐵 ∩ 𝐶) = ∅) | ||
Theorem | disjif 32076* | Property of a disjoint collection: if 𝐵(𝑥) and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑥 = 𝑌. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶)) → 𝑥 = 𝑌) | ||
Theorem | disjorf 32077* | Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑖𝐴 & ⊢ Ⅎ𝑗𝐴 & ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑖 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
Theorem | disjorsf 32078* | Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) | ||
Theorem | disjif2 32079* | Property of a disjoint collection: if 𝐵(𝑥) and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑥 = 𝑌. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶)) → 𝑥 = 𝑌) | ||
Theorem | disjabrex 32080* | Rewriting a disjoint collection into a partition of its image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦) | ||
Theorem | disjabrexf 32081* | Rewriting a disjoint collection into a partition of its image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) (Revised by Thierry Arnoux, 9-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦) | ||
Theorem | disjpreima 32082* | A preimage of a disjoint set is disjoint. (Contributed by Thierry Arnoux, 7-Feb-2017.) |
⊢ ((Fun 𝐹 ∧ Disj 𝑥 ∈ 𝐴 𝐵) → Disj 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) | ||
Theorem | disjrnmpt 32083* | Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦) | ||
Theorem | disjin 32084 | If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐶 ∩ 𝐴)) | ||
Theorem | disjin2 32085 | If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐴 ∩ 𝐶)) | ||
Theorem | disjxpin 32086* | Derive a disjunction over a Cartesian product from the disjunctions over its first and second elements. (Contributed by Thierry Arnoux, 9-Mar-2018.) |
⊢ (𝑥 = (1st ‘𝑝) → 𝐶 = 𝐸) & ⊢ (𝑦 = (2nd ‘𝑝) → 𝐷 = 𝐹) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐶) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝐵 𝐷) ⇒ ⊢ (𝜑 → Disj 𝑝 ∈ (𝐴 × 𝐵)(𝐸 ∩ 𝐹)) | ||
Theorem | iundisjf 32087* | Rewrite a countable union as a disjoint union. Cf. iundisj 25297. (Contributed by Thierry Arnoux, 31-Dec-2016.) |
⊢ Ⅎ𝑘𝐴 & ⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
Theorem | iundisj2f 32088* | A disjoint union is disjoint. Cf. iundisj2 25298. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
⊢ Ⅎ𝑘𝐴 & ⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ Disj 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
Theorem | disjrdx 32089* | Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.) |
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) & ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) | ||
Theorem | disjex 32090* | Two ways to say that two classes are disjoint (or equal). (Contributed by Thierry Arnoux, 4-Oct-2016.) |
⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) | ||
Theorem | disjexc 32091* | A variant of disjex 32090, applicable for more generic families. (Contributed by Thierry Arnoux, 4-Oct-2016.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝑥 = 𝑦) → (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) | ||
Theorem | disjunsn 32092* | Append an element to a disjoint collection. Similar to ralunsn 4893, gsumunsn 19869, etc. (Contributed by Thierry Arnoux, 28-Mar-2018.) |
⊢ (𝑥 = 𝑀 → 𝐵 = 𝐶) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) | ||
Theorem | disjun0 32093* | Adding the empty element preserves disjointness. (Contributed by Thierry Arnoux, 30-May-2020.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝑥 → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) | ||
Theorem | disjiunel 32094* | A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.) |
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐸 ⊆ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∖ 𝐸)) ⇒ ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅) | ||
Theorem | disjuniel 32095* | A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.) |
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) ⇒ ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐶) = ∅) | ||
Theorem | xpdisjres 32096 | Restriction of a constant function (or other Cartesian product) outside of its domain. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) ↾ 𝐶) = ∅) | ||
Theorem | opeldifid 32097 | Ordered pair elementhood outside of the diagonal. (Contributed by Thierry Arnoux, 1-Jan-2020.) |
⊢ (Rel 𝐴 → (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ I ) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ 𝑋 ≠ 𝑌))) | ||
Theorem | difres 32098 | Case when class difference in unaffected by restriction. (Contributed by Thierry Arnoux, 1-Jan-2020.) |
⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ↾ 𝐵)) = (𝐴 ∖ 𝐶)) | ||
Theorem | imadifxp 32099 | Image of the difference with a Cartesian product. (Contributed by Thierry Arnoux, 13-Dec-2017.) |
⊢ (𝐶 ⊆ 𝐴 → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) | ||
Theorem | relfi 32100 | A relation (set) is finite if and only if both its domain and range are finite. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
⊢ (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |