| Metamath
Proof Explorer Theorem List (p. 321 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nmcexi 32001* | Lemma for nmcopexi 32002 and nmcfnexi 32026. The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by Mario Carneiro, 17-Nov-2013.) (Proof shortened by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (𝑁‘(𝑇‘𝑧)) < 1) & ⊢ (𝑆‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇‘𝑥)))}, ℝ*, < ) & ⊢ (𝑥 ∈ ℋ → (𝑁‘(𝑇‘𝑥)) ∈ ℝ) & ⊢ (𝑁‘(𝑇‘0ℎ)) = 0 & ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (𝑁‘(𝑇‘𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) ⇒ ⊢ (𝑆‘𝑇) ∈ ℝ | ||
| Theorem | nmcopexi 32002 | The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ (normop‘𝑇) ∈ ℝ | ||
| Theorem | nmcoplbi 32003 | A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmcopex 32004 | The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) → (normop‘𝑇) ∈ ℝ) | ||
| Theorem | nmcoplb 32005 | A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmophmi 32006 | The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop‘𝑇))) | ||
| Theorem | bdophmi 32007 | The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) | ||
| Theorem | lnconi 32008* | Lemma for lnopconi 32009 and lnfnconi 32030. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ 𝐶 → 𝑆 ∈ ℝ) & ⊢ ((𝑇 ∈ 𝐶 ∧ 𝑦 ∈ ℋ) → (𝑁‘(𝑇‘𝑦)) ≤ (𝑆 · (normℎ‘𝑦))) & ⊢ (𝑇 ∈ 𝐶 ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (𝑁‘((𝑇‘𝑤)𝑀(𝑇‘𝑥))) < 𝑧)) & ⊢ (𝑦 ∈ ℋ → (𝑁‘(𝑇‘𝑦)) ∈ ℝ) & ⊢ ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 −ℎ 𝑥)) = ((𝑇‘𝑤)𝑀(𝑇‘𝑥))) ⇒ ⊢ (𝑇 ∈ 𝐶 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
| Theorem | lnopconi 32009* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
| Theorem | lnopcon 32010* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | ||
| Theorem | lnopcnbd 32011 | A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp)) | ||
| Theorem | lncnopbd 32012 | A continuous linear operator is a bounded linear operator. This theorem justifies our use of "bounded linear" as an interchangeable condition for "continuous linear" used in some textbook proofs. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ (LinOp ∩ ContOp) ↔ 𝑇 ∈ BndLinOp) | ||
| Theorem | lncnbd 32013 | A continuous linear operator is a bounded linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ (LinOp ∩ ContOp) = BndLinOp | ||
| Theorem | lnopcnre 32014 | A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ (normop‘𝑇) ∈ ℝ)) | ||
| Theorem | lnfnli 32015 | Basic property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶))) | ||
| Theorem | lnfnfi 32016 | A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ 𝑇: ℋ⟶ℂ | ||
| Theorem | lnfn0i 32017 | The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ (𝑇‘0ℎ) = 0 | ||
| Theorem | lnfnaddi 32018 | Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) | ||
| Theorem | lnfnmuli 32019 | Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) | ||
| Theorem | lnfnaddmuli 32020 | Sum/product property of a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 +ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) + (𝐴 · (𝑇‘𝐶)))) | ||
| Theorem | lnfnsubi 32021 | Subtraction property for a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) − (𝑇‘𝐵))) | ||
| Theorem | lnfn0 32022 | The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn → (𝑇‘0ℎ) = 0) | ||
| Theorem | lnfnmul 32023 | Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) | ||
| Theorem | nmbdfnlbi 32024 | A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) ⇒ ⊢ (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmbdfnlb 32025 | A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmcfnexi 32026 | The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (normfn‘𝑇) ∈ ℝ | ||
| Theorem | nmcfnlbi 32027 | A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmcfnex 32028 | The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn‘𝑇) ∈ ℝ) | ||
| Theorem | nmcfnlb 32029 | A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | lnfnconi 32030* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
| Theorem | lnfncon 32031* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | ||
| Theorem | lnfncnbd 32032 | A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) | ||
| Theorem | imaelshi 32033 | The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝑇 “ 𝐴) ∈ Sℋ | ||
| Theorem | rnelshi 32034 | The range of a linear operator is a subspace. (Contributed by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ran 𝑇 ∈ Sℋ | ||
| Theorem | nlelshi 32035 | The null space of a linear functional is a subspace. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ (null‘𝑇) ∈ Sℋ | ||
| Theorem | nlelchi 32036 | The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (null‘𝑇) ∈ Cℋ | ||
| Theorem | riesz3i 32037* | A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) | ||
| Theorem | riesz4i 32038* | A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) | ||
| Theorem | riesz4 32039* | A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. See riesz2 32041 for the bounded linear functional version. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤)) | ||
| Theorem | riesz1 32040* | Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 32041. For the continuous linear functional version, see riesz3i 32037 and riesz4 32039. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) | ||
| Theorem | riesz2 32041* | Part 2 of the Riesz representation theorem for bounded linear functionals. The value of a bounded linear functional corresponds to a unique inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 1, see riesz1 32040. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) | ||
| Theorem | cnlnadjlem1 32042* | Lemma for cnlnadji 32051 (Theorem 3.10 of [Beran] p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional 𝐺. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) ⇒ ⊢ (𝐴 ∈ ℋ → (𝐺‘𝐴) = ((𝑇‘𝐴) ·ih 𝑦)) | ||
| Theorem | cnlnadjlem2 32043* | Lemma for cnlnadji 32051. 𝐺 is a continuous linear functional. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) ⇒ ⊢ (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn)) | ||
| Theorem | cnlnadjlem3 32044* | Lemma for cnlnadji 32051. By riesz4 32039, 𝐵 is the unique vector such that (𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) for all 𝑣. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ⇒ ⊢ (𝑦 ∈ ℋ → 𝐵 ∈ ℋ) | ||
| Theorem | cnlnadjlem4 32045* | Lemma for cnlnadji 32051. The values of auxiliary function 𝐹 are vectors. (Contributed by NM, 17-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ (𝐴 ∈ ℋ → (𝐹‘𝐴) ∈ ℋ) | ||
| Theorem | cnlnadjlem5 32046* | Lemma for cnlnadji 32051. 𝐹 is an adjoint of 𝑇 (later, we will show it is unique). (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) | ||
| Theorem | cnlnadjlem6 32047* | Lemma for cnlnadji 32051. 𝐹 is linear. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ 𝐹 ∈ LinOp | ||
| Theorem | cnlnadjlem7 32048* | Lemma for cnlnadji 32051. Helper lemma to show that 𝐹 is continuous. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝐹‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | cnlnadjlem8 32049* | Lemma for cnlnadji 32051. 𝐹 is continuous. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ 𝐹 ∈ ContOp | ||
| Theorem | cnlnadjlem9 32050* | Lemma for cnlnadji 32051. 𝐹 provides an example showing the existence of a continuous linear adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) | ||
| Theorem | cnlnadji 32051* | Every continuous linear operator has an adjoint. Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) | ||
| Theorem | cnlnadjeui 32052* | Every continuous linear operator has a unique adjoint. Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ ∃!𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) | ||
| Theorem | cnlnadjeu 32053* | Every continuous linear operator has a unique adjoint. Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ (LinOp ∩ ContOp) → ∃!𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) | ||
| Theorem | cnlnadj 32054* | Every continuous linear operator has an adjoint. Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ (LinOp ∩ ContOp) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) | ||
| Theorem | cnlnssadj 32055 | Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ (LinOp ∩ ContOp) ⊆ dom adjℎ | ||
| Theorem | bdopssadj 32056 | Every bounded linear Hilbert space operator has an adjoint. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
| ⊢ BndLinOp ⊆ dom adjℎ | ||
| Theorem | bdopadj 32057 | Every bounded linear Hilbert space operator has an adjoint. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ) | ||
| Theorem | adjbdln 32058 | The adjoint of a bounded linear operator is a bounded linear operator. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) | ||
| Theorem | adjbdlnb 32059 | An operator is bounded and linear iff its adjoint is. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ BndLinOp ↔ (adjℎ‘𝑇) ∈ BndLinOp) | ||
| Theorem | adjbd1o 32060 | The mapping of adjoints of bounded linear operators is one-to-one onto. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
| ⊢ (adjℎ ↾ BndLinOp):BndLinOp–1-1-onto→BndLinOp | ||
| Theorem | adjlnop 32061 | The adjoint of an operator is linear. Proposition 1 of [AkhiezerGlazman] p. 80. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) ∈ LinOp) | ||
| Theorem | adjsslnop 32062 | Every operator with an adjoint is linear. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.) |
| ⊢ dom adjℎ ⊆ LinOp | ||
| Theorem | nmopadjlei 32063 | Property of the norm of an adjoint. Part of proof of Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘((adjℎ‘𝑇)‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmopadjlem 32064 | Lemma for nmopadji 32065. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘(adjℎ‘𝑇)) ≤ (normop‘𝑇) | ||
| Theorem | nmopadji 32065 | Property of the norm of an adjoint. Theorem 3.11(v) of [Beran] p. 106. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘(adjℎ‘𝑇)) = (normop‘𝑇) | ||
| Theorem | adjeq0 32066 | An operator is zero iff its adjoint is zero. Theorem 3.11(i) of [Beran] p. 106. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 = 0hop ↔ (adjℎ‘𝑇) = 0hop ) | ||
| Theorem | adjmul 32067 | The adjoint of the scalar product of an operator. Theorem 3.11(ii) of [Beran] p. 106. (Contributed by NM, 21-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ) → (adjℎ‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adjℎ‘𝑇))) | ||
| Theorem | adjadd 32068 | The adjoint of the sum of two operators. Theorem 3.11(iii) of [Beran] p. 106. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ) → (adjℎ‘(𝑆 +op 𝑇)) = ((adjℎ‘𝑆) +op (adjℎ‘𝑇))) | ||
| Theorem | nmoptrii 32069 | Triangle inequality for the norms of bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) + (normop‘𝑇)) | ||
| Theorem | nmopcoi 32070 | Upper bound for the norm of the composition of two bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘(𝑆 ∘ 𝑇)) ≤ ((normop‘𝑆) · (normop‘𝑇)) | ||
| Theorem | bdophsi 32071 | The sum of two bounded linear operators is a bounded linear operator. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝑆 +op 𝑇) ∈ BndLinOp | ||
| Theorem | bdophdi 32072 | The difference between two bounded linear operators is bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝑆 −op 𝑇) ∈ BndLinOp | ||
| Theorem | bdopcoi 32073 | The composition of two bounded linear operators is bounded. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝑆 ∘ 𝑇) ∈ BndLinOp | ||
| Theorem | nmoptri2i 32074 | Triangle-type inequality for the norms of bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ ((normop‘𝑆) − (normop‘𝑇)) ≤ (normop‘(𝑆 +op 𝑇)) | ||
| Theorem | adjcoi 32075 | The adjoint of a composition of bounded linear operators. Theorem 3.11(viii) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)) | ||
| Theorem | nmopcoadji 32076 | The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘((adjℎ‘𝑇) ∘ 𝑇)) = ((normop‘𝑇)↑2) | ||
| Theorem | nmopcoadj2i 32077 | The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘(𝑇 ∘ (adjℎ‘𝑇))) = ((normop‘𝑇)↑2) | ||
| Theorem | nmopcoadj0i 32078 | An operator composed with its adjoint is zero iff the operator is zero. Theorem 3.11(vii) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ ((𝑇 ∘ (adjℎ‘𝑇)) = 0hop ↔ 𝑇 = 0hop ) | ||
| Theorem | unierri 32079 | If we approximate a chain of unitary transformations (quantum computer gates) 𝐹, 𝐺 by other unitary transformations 𝑆, 𝑇, the error increases at most additively. Equation 4.73 of [NielsenChuang] p. 195. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝐹 ∈ UniOp & ⊢ 𝐺 ∈ UniOp & ⊢ 𝑆 ∈ UniOp & ⊢ 𝑇 ∈ UniOp ⇒ ⊢ (normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ≤ ((normop‘(𝐹 −op 𝑆)) + (normop‘(𝐺 −op 𝑇))) | ||
| Theorem | branmfn 32080 | The norm of the bra function. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (normℎ‘𝐴)) | ||
| Theorem | brabn 32081 | The bra of a vector is a bounded functional. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) ∈ ℝ) | ||
| Theorem | rnbra 32082 | The set of bras equals the set of continuous linear functionals. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
| ⊢ ran bra = (LinFn ∩ ContFn) | ||
| Theorem | bra11 32083 | The bra function maps vectors one-to-one onto the set of continuous linear functionals. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ bra: ℋ–1-1-onto→(LinFn ∩ ContFn) | ||
| Theorem | bracnln 32084 | A bra is a continuous linear functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ (LinFn ∩ ContFn)) | ||
| Theorem | cnvbraval 32085* | Value of the converse of the bra function. Based on the Riesz Lemma riesz4 32039, this very important theorem not only justifies the Dirac bra-ket notation, but allows to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store" all of the information contained in any entire continuous linear functional (mapping from ℋ to ℂ). (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) | ||
| Theorem | cnvbracl 32086 | Closure of the converse of the bra function. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) ∈ ℋ) | ||
| Theorem | cnvbrabra 32087 | The converse bra of the bra of a vector is the vector itself. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (◡bra‘(bra‘𝐴)) = 𝐴) | ||
| Theorem | bracnvbra 32088 | The bra of the converse bra of a continuous linear functional. (Contributed by NM, 31-May-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (bra‘(◡bra‘𝑇)) = 𝑇) | ||
| Theorem | bracnlnval 32089* | The vector that a continuous linear functional is the bra of. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → 𝑇 = (bra‘(℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)))) | ||
| Theorem | cnvbramul 32090 | Multiplication property of the converse bra function. (Contributed by NM, 31-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ (LinFn ∩ ContFn)) → (◡bra‘(𝐴 ·fn 𝑇)) = ((∗‘𝐴) ·ℎ (◡bra‘𝑇))) | ||
| Theorem | kbass1 32091 | Dirac bra-ket associative law ( ∣ 𝐴〉〈𝐵 ∣ ) ∣ 𝐶〉 = ∣ 𝐴〉(〈𝐵 ∣ 𝐶〉), i.e., the juxtaposition of an outer product with a ket equals a bra juxtaposed with an inner product. Since 〈𝐵 ∣ 𝐶〉 is a complex number, it is the first argument in the inner product ·ℎ that it is mapped to, although in Dirac notation it is placed after the ket. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = (((bra‘𝐵)‘𝐶) ·ℎ 𝐴)) | ||
| Theorem | kbass2 32092 | Dirac bra-ket associative law (〈𝐴 ∣ 𝐵〉)〈𝐶 ∣ = 〈𝐴 ∣ ( ∣ 𝐵〉〈𝐶 ∣ ), i.e., the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))) | ||
| Theorem | kbass3 32093 | Dirac bra-ket associative law 〈𝐴 ∣ 𝐵〉〈𝐶 ∣ 𝐷〉 = (〈𝐴 ∣ 𝐵〉〈𝐶 ∣ ) ∣ 𝐷〉. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝐷)) | ||
| Theorem | kbass4 32094 | Dirac bra-ket associative law 〈𝐴 ∣ 𝐵〉〈𝐶 ∣ 𝐷〉 = 〈𝐴 ∣ ( ∣ 𝐵〉〈𝐶 ∣ 𝐷〉). (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) ·ℎ 𝐵))) | ||
| Theorem | kbass5 32095 | Dirac bra-ket associative law ( ∣ 𝐴〉〈𝐵 ∣ )( ∣ 𝐶〉〈𝐷 ∣ ) = (( ∣ 𝐴〉〈𝐵 ∣ ) ∣ 𝐶〉)〈𝐷 ∣. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)) | ||
| Theorem | kbass6 32096 | Dirac bra-ket associative law ( ∣ 𝐴〉〈𝐵 ∣ )( ∣ 𝐶〉〈𝐷 ∣ ) = ∣ 𝐴〉(〈𝐵 ∣ ( ∣ 𝐶〉〈𝐷 ∣ )). (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (𝐴 ketbra (◡bra‘((bra‘𝐵) ∘ (𝐶 ketbra 𝐷))))) | ||
| Theorem | leopg 32097* | Ordering relation for positive operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐵) → (𝑇 ≤op 𝑈 ↔ ((𝑈 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)))) | ||
| Theorem | leop 32098* | Ordering relation for operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 ≤op 𝑈 ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥))) | ||
| Theorem | leop2 32099* | Ordering relation for operators. Definition of operator ordering in [Young] p. 141. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 ≤op 𝑈 ↔ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) ≤ ((𝑈‘𝑥) ·ih 𝑥))) | ||
| Theorem | leop3 32100 | Operator ordering in terms of a positive operator. Definition of operator ordering in [Retherford] p. 49. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 ≤op 𝑈 ↔ 0hop ≤op (𝑈 −op 𝑇))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |