![]() |
Metamath
Proof Explorer Theorem List (p. 321 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lnopfi 32001 | A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ 𝑇: ℋ⟶ ℋ | ||
Theorem | lnop0i 32002 | The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇‘0ℎ) = 0ℎ | ||
Theorem | lnopaddi 32003 | Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) +ℎ (𝑇‘𝐵))) | ||
Theorem | lnopmuli 32004 | Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) | ||
Theorem | lnopaddmuli 32005 | Sum/product property of a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 +ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) +ℎ (𝐴 ·ℎ (𝑇‘𝐶)))) | ||
Theorem | lnopsubi 32006 | Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) | ||
Theorem | lnopsubmuli 32007 | Subtraction/product property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 −ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) −ℎ (𝐴 ·ℎ (𝑇‘𝐶)))) | ||
Theorem | lnopmulsubi 32008 | Product/subtraction property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) −ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) −ℎ (𝑇‘𝐶))) | ||
Theorem | homco2 32009 | Move a scalar product out of a composition of operators. The operator 𝑇 must be linear, unlike homco1 31833 that works for any operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇 ∘ 𝑈))) | ||
Theorem | idunop 32010 | The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.) |
⊢ ( I ↾ ℋ) ∈ UniOp | ||
Theorem | 0cnop 32011 | The identically zero function is a continuous Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ 0hop ∈ ContOp | ||
Theorem | 0cnfn 32012 | The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ( ℋ × {0}) ∈ ContFn | ||
Theorem | idcnop 32013 | The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ( I ↾ ℋ) ∈ ContOp | ||
Theorem | idhmop 32014 | The Hilbert space identity operator is a Hermitian operator. (Contributed by NM, 22-Apr-2006.) (New usage is discouraged.) |
⊢ Iop ∈ HrmOp | ||
Theorem | 0hmop 32015 | The identically zero function is a Hermitian operator. (Contributed by NM, 8-Aug-2006.) (New usage is discouraged.) |
⊢ 0hop ∈ HrmOp | ||
Theorem | 0lnop 32016 | The identically zero function is a linear Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ 0hop ∈ LinOp | ||
Theorem | 0lnfn 32017 | The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ ( ℋ × {0}) ∈ LinFn | ||
Theorem | nmop0 32018 | The norm of the zero operator is zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) |
⊢ (normop‘ 0hop ) = 0 | ||
Theorem | nmfn0 32019 | The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (normfn‘( ℋ × {0})) = 0 | ||
Theorem | hmopbdoptHIL 32020 | A Hermitian operator is a bounded linear operator (Hellinger-Toeplitz Theorem). (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) |
⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp) | ||
Theorem | hoddii 32021 | Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31812 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑅 ∈ LinOp & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) | ||
Theorem | hoddi 32022 | Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31812 does not require linearity.) (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑅 ∈ LinOp ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))) | ||
Theorem | nmop0h 32023 | The norm of any operator on the trivial Hilbert space is zero. (This is the reason we need ℋ ≠ 0ℋ in nmopun 32046.) (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.) |
⊢ (( ℋ = 0ℋ ∧ 𝑇: ℋ⟶ ℋ) → (normop‘𝑇) = 0) | ||
Theorem | idlnop 32024 | The identity function (restricted to Hilbert space) is a linear operator. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
⊢ ( I ↾ ℋ) ∈ LinOp | ||
Theorem | 0bdop 32025 | The identically zero operator is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ 0hop ∈ BndLinOp | ||
Theorem | adj0 32026 | Adjoint of the zero operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ (adjℎ‘ 0hop ) = 0hop | ||
Theorem | nmlnop0iALT 32027 | A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) | ||
Theorem | nmlnop0iHIL 32028 | A linear operator with a zero norm is identically zero. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) | ||
Theorem | nmlnopgt0i 32029 | A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇 ≠ 0hop ↔ 0 < (normop‘𝑇)) | ||
Theorem | nmlnop0 32030 | A linear operator with a zero norm is identically zero. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop )) | ||
Theorem | nmlnopne0 32031 | A linear operator with a nonzero norm is nonzero. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → ((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop )) | ||
Theorem | lnopmi 32032 | The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp) | ||
Theorem | lnophsi 32033 | The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 +op 𝑇) ∈ LinOp | ||
Theorem | lnophdi 32034 | The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 −op 𝑇) ∈ LinOp | ||
Theorem | lnopcoi 32035 | The composition of two linear operators is linear. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 ∘ 𝑇) ∈ LinOp | ||
Theorem | lnopco0i 32036 | The composition of a linear operator with one whose norm is zero. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 → (normop‘(𝑆 ∘ 𝑇)) = 0) | ||
Theorem | lnopeq0lem1 32037 | Lemma for lnopeq0i 32039. Apply the generalized polarization identity polid2i 31189 to the quadratic form ((𝑇‘𝑥), 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝑇‘𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 +ℎ 𝐵)) ·ih (𝐴 +ℎ 𝐵)) − ((𝑇‘(𝐴 −ℎ 𝐵)) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝑇‘(𝐴 +ℎ (i ·ℎ 𝐵))) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝑇‘(𝐴 −ℎ (i ·ℎ 𝐵))) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) | ||
Theorem | lnopeq0lem2 32038 | Lemma for lnopeq0i 32039. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 +ℎ 𝐵)) ·ih (𝐴 +ℎ 𝐵)) − ((𝑇‘(𝐴 −ℎ 𝐵)) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝑇‘(𝐴 +ℎ (i ·ℎ 𝐵))) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝑇‘(𝐴 −ℎ (i ·ℎ 𝐵))) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4)) | ||
Theorem | lnopeq0i 32039* | A condition implying that a linear Hilbert space operator is identically zero. Unlike ho01i 31860 for arbitrary operators, when the operator is linear we need to consider only the values of the quadratic form (𝑇‘𝑥) ·ih 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = 0 ↔ 𝑇 = 0hop ) | ||
Theorem | lnopeqi 32040* | Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑈 ∈ LinOp ⇒ ⊢ (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈) | ||
Theorem | lnopeq 32041* | Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinOp ∧ 𝑈 ∈ LinOp) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈)) | ||
Theorem | lnopunilem1 32042* | Lemma for lnopunii 32044. (Contributed by NM, 14-May-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) | ||
Theorem | lnopunilem2 32043* | Lemma for lnopunii 32044. (Contributed by NM, 12-May-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) | ||
Theorem | lnopunii 32044* | If a linear operator (whose range is ℋ) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇: ℋ–onto→ ℋ & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) ⇒ ⊢ 𝑇 ∈ UniOp | ||
Theorem | elunop2 32045* | An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in [AkhiezerGlazman] p. 73, and its converse. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥))) | ||
Theorem | nmopun 32046 | Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
⊢ (( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → (normop‘𝑇) = 1) | ||
Theorem | unopbd 32047 | A unitary operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp) | ||
Theorem | lnophmlem1 32048* | Lemma for lnophmi 32050. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ | ||
Theorem | lnophmlem2 32049* | Lemma for lnophmi 32050. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) | ||
Theorem | lnophmi 32050* | A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ 𝑇 ∈ HrmOp | ||
Theorem | lnophm 32051* | A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp) | ||
Theorem | hmops 32052 | The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp) | ||
Theorem | hmopm 32053 | The scalar product of a Hermitian operator with a real is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp) | ||
Theorem | hmopd 32054 | The difference of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 −op 𝑈) ∈ HrmOp) | ||
Theorem | hmopco 32055 | The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇 ∘ 𝑈) = (𝑈 ∘ 𝑇)) → (𝑇 ∘ 𝑈) ∈ HrmOp) | ||
Theorem | nmbdoplbi 32056 | A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmbdoplb 32057 | A lower bound for the norm of a bounded linear Hilbert space operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ BndLinOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmcexi 32058* | Lemma for nmcopexi 32059 and nmcfnexi 32083. The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by Mario Carneiro, 17-Nov-2013.) (Proof shortened by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (𝑁‘(𝑇‘𝑧)) < 1) & ⊢ (𝑆‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇‘𝑥)))}, ℝ*, < ) & ⊢ (𝑥 ∈ ℋ → (𝑁‘(𝑇‘𝑥)) ∈ ℝ) & ⊢ (𝑁‘(𝑇‘0ℎ)) = 0 & ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (𝑁‘(𝑇‘𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) ⇒ ⊢ (𝑆‘𝑇) ∈ ℝ | ||
Theorem | nmcopexi 32059 | The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ (normop‘𝑇) ∈ ℝ | ||
Theorem | nmcoplbi 32060 | A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmcopex 32061 | The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) → (normop‘𝑇) ∈ ℝ) | ||
Theorem | nmcoplb 32062 | A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmophmi 32063 | The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop‘𝑇))) | ||
Theorem | bdophmi 32064 | The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) | ||
Theorem | lnconi 32065* | Lemma for lnopconi 32066 and lnfnconi 32087. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ 𝐶 → 𝑆 ∈ ℝ) & ⊢ ((𝑇 ∈ 𝐶 ∧ 𝑦 ∈ ℋ) → (𝑁‘(𝑇‘𝑦)) ≤ (𝑆 · (normℎ‘𝑦))) & ⊢ (𝑇 ∈ 𝐶 ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (𝑁‘((𝑇‘𝑤)𝑀(𝑇‘𝑥))) < 𝑧)) & ⊢ (𝑦 ∈ ℋ → (𝑁‘(𝑇‘𝑦)) ∈ ℝ) & ⊢ ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 −ℎ 𝑥)) = ((𝑇‘𝑤)𝑀(𝑇‘𝑥))) ⇒ ⊢ (𝑇 ∈ 𝐶 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
Theorem | lnopconi 32066* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
Theorem | lnopcon 32067* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | ||
Theorem | lnopcnbd 32068 | A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp)) | ||
Theorem | lncnopbd 32069 | A continuous linear operator is a bounded linear operator. This theorem justifies our use of "bounded linear" as an interchangeable condition for "continuous linear" used in some textbook proofs. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ (LinOp ∩ ContOp) ↔ 𝑇 ∈ BndLinOp) | ||
Theorem | lncnbd 32070 | A continuous linear operator is a bounded linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ (LinOp ∩ ContOp) = BndLinOp | ||
Theorem | lnopcnre 32071 | A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ (normop‘𝑇) ∈ ℝ)) | ||
Theorem | lnfnli 32072 | Basic property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶))) | ||
Theorem | lnfnfi 32073 | A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ 𝑇: ℋ⟶ℂ | ||
Theorem | lnfn0i 32074 | The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ (𝑇‘0ℎ) = 0 | ||
Theorem | lnfnaddi 32075 | Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) | ||
Theorem | lnfnmuli 32076 | Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) | ||
Theorem | lnfnaddmuli 32077 | Sum/product property of a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 +ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) + (𝐴 · (𝑇‘𝐶)))) | ||
Theorem | lnfnsubi 32078 | Subtraction property for a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) − (𝑇‘𝐵))) | ||
Theorem | lnfn0 32079 | The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → (𝑇‘0ℎ) = 0) | ||
Theorem | lnfnmul 32080 | Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) | ||
Theorem | nmbdfnlbi 32081 | A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) ⇒ ⊢ (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmbdfnlb 32082 | A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmcfnexi 32083 | The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (normfn‘𝑇) ∈ ℝ | ||
Theorem | nmcfnlbi 32084 | A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmcfnex 32085 | The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn‘𝑇) ∈ ℝ) | ||
Theorem | nmcfnlb 32086 | A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | lnfnconi 32087* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
Theorem | lnfncon 32088* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | ||
Theorem | lnfncnbd 32089 | A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) | ||
Theorem | imaelshi 32090 | The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝑇 “ 𝐴) ∈ Sℋ | ||
Theorem | rnelshi 32091 | The range of a linear operator is a subspace. (Contributed by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ran 𝑇 ∈ Sℋ | ||
Theorem | nlelshi 32092 | The null space of a linear functional is a subspace. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ (null‘𝑇) ∈ Sℋ | ||
Theorem | nlelchi 32093 | The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (null‘𝑇) ∈ Cℋ | ||
Theorem | riesz3i 32094* | A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) | ||
Theorem | riesz4i 32095* | A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) | ||
Theorem | riesz4 32096* | A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. See riesz2 32098 for the bounded linear functional version. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤)) | ||
Theorem | riesz1 32097* | Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 32098. For the continuous linear functional version, see riesz3i 32094 and riesz4 32096. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) | ||
Theorem | riesz2 32098* | Part 2 of the Riesz representation theorem for bounded linear functionals. The value of a bounded linear functional corresponds to a unique inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 1, see riesz1 32097. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) | ||
Theorem | cnlnadjlem1 32099* | Lemma for cnlnadji 32108 (Theorem 3.10 of [Beran] p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional 𝐺. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) ⇒ ⊢ (𝐴 ∈ ℋ → (𝐺‘𝐴) = ((𝑇‘𝐴) ·ih 𝑦)) | ||
Theorem | cnlnadjlem2 32100* | Lemma for cnlnadji 32108. 𝐺 is a continuous linear functional. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) ⇒ ⊢ (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |